nabil-tazi commited on
Commit
1175f57
·
verified ·
1 Parent(s): c2dd685

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - autotrain
9
+ base_model: sentence-transformers/all-MiniLM-L6-v2
10
+ widget:
11
+ - source_sentence: 'search_query: i love autotrain'
12
+ sentences:
13
+ - 'search_query: huggingface auto train'
14
+ - 'search_query: hugging face auto train'
15
+ - 'search_query: i love autotrain'
16
+ pipeline_tag: sentence-similarity
17
+ ---
18
+
19
+ # Model Trained Using AutoTrain
20
+
21
+ - Problem type: Sentence Transformers
22
+
23
+ ## Validation Metrics
24
+ loss: 0.561651885509491
25
+
26
+ runtime: 0.3816
27
+
28
+ samples_per_second: 96.96
29
+
30
+ steps_per_second: 7.862
31
+
32
+ : 3.0
33
+
34
+ ## Usage
35
+
36
+ ### Direct Usage (Sentence Transformers)
37
+
38
+ First install the Sentence Transformers library:
39
+
40
+ ```bash
41
+ pip install -U sentence-transformers
42
+ ```
43
+
44
+ Then you can load this model and run inference.
45
+ ```python
46
+ from sentence_transformers import SentenceTransformer
47
+
48
+ # Download from the Hugging Face Hub
49
+ model = SentenceTransformer("sentence_transformers_model_id")
50
+ # Run inference
51
+ sentences = [
52
+ 'search_query: autotrain',
53
+ 'search_query: auto train',
54
+ 'search_query: i love autotrain',
55
+ ]
56
+ embeddings = model.encode(sentences)
57
+ print(embeddings.shape)
58
+
59
+ # Get the similarity scores for the embeddings
60
+ similarities = model.similarity(embeddings, embeddings)
61
+ print(similarities.shape)
62
+ ```
checkpoint-57/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-57/README.md ADDED
@@ -0,0 +1,382 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:145
8
+ - loss:SoftmaxLoss
9
+ base_model: sentence-transformers/all-MiniLM-L6-v2
10
+ widget:
11
+ - source_sentence: 間接照明にして
12
+ sentences:
13
+ - bright
14
+ - natural
15
+ - cozy
16
+ - source_sentence: 見えにくい
17
+ sentences:
18
+ - natural
19
+ - cozy
20
+ - cozy
21
+ - source_sentence: 自然光が欲しい
22
+ sentences:
23
+ - cozy
24
+ - cozy
25
+ - cozy
26
+ - source_sentence: warm
27
+ sentences:
28
+ - bright
29
+ - cozy
30
+ - cozy
31
+ - source_sentence: 自然な
32
+ sentences:
33
+ - cozy
34
+ - cozy
35
+ - cozy
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ ---
39
+
40
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
41
+
42
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** Sentence Transformer
48
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
49
+ - **Maximum Sequence Length:** 256 tokens
50
+ - **Output Dimensionality:** 384 dimensions
51
+ - **Similarity Function:** Cosine Similarity
52
+ <!-- - **Training Dataset:** Unknown -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
+
62
+ ### Full Model Architecture
63
+
64
+ ```
65
+ SentenceTransformer(
66
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
67
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
+ (2): Normalize()
69
+ )
70
+ ```
71
+
72
+ ## Usage
73
+
74
+ ### Direct Usage (Sentence Transformers)
75
+
76
+ First install the Sentence Transformers library:
77
+
78
+ ```bash
79
+ pip install -U sentence-transformers
80
+ ```
81
+
82
+ Then you can load this model and run inference.
83
+ ```python
84
+ from sentence_transformers import SentenceTransformer
85
+
86
+ # Download from the 🤗 Hub
87
+ model = SentenceTransformer("sentence_transformers_model_id")
88
+ # Run inference
89
+ sentences = [
90
+ '自然な',
91
+ 'cozy',
92
+ 'cozy',
93
+ ]
94
+ embeddings = model.encode(sentences)
95
+ print(embeddings.shape)
96
+ # [3, 384]
97
+
98
+ # Get the similarity scores for the embeddings
99
+ similarities = model.similarity(embeddings, embeddings)
100
+ print(similarities.shape)
101
+ # [3, 3]
102
+ ```
103
+
104
+ <!--
105
+ ### Direct Usage (Transformers)
106
+
107
+ <details><summary>Click to see the direct usage in Transformers</summary>
108
+
109
+ </details>
110
+ -->
111
+
112
+ <!--
113
+ ### Downstream Usage (Sentence Transformers)
114
+
115
+ You can finetune this model on your own dataset.
116
+
117
+ <details><summary>Click to expand</summary>
118
+
119
+ </details>
120
+ -->
121
+
122
+ <!--
123
+ ### Out-of-Scope Use
124
+
125
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
126
+ -->
127
+
128
+ <!--
129
+ ## Bias, Risks and Limitations
130
+
131
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
132
+ -->
133
+
134
+ <!--
135
+ ### Recommendations
136
+
137
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
138
+ -->
139
+
140
+ ## Training Details
141
+
142
+ ### Training Dataset
143
+
144
+ #### Unnamed Dataset
145
+
146
+
147
+ * Size: 145 training samples
148
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
149
+ * Approximate statistics based on the first 145 samples:
150
+ | | premise | hypothesis | label |
151
+ |:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:------------------------------------------------|
152
+ | type | string | string | int |
153
+ | details | <ul><li>min: 3 tokens</li><li>mean: 5.79 tokens</li><li>max: 12 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.0 tokens</li><li>max: 3 tokens</li></ul> | <ul><li>0: ~26.21%</li><li>1: ~73.79%</li></ul> |
154
+ * Samples:
155
+ | premise | hypothesis | label |
156
+ |:---------------------------|:---------------------|:---------------|
157
+ | <code>天然</code> | <code>natural</code> | <code>1</code> |
158
+ | <code>晴れた日</code> | <code>natural</code> | <code>1</code> |
159
+ | <code>warm lighting</code> | <code>cozy</code> | <code>1</code> |
160
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
161
+
162
+ ### Evaluation Dataset
163
+
164
+ #### Unnamed Dataset
165
+
166
+
167
+ * Size: 37 evaluation samples
168
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
169
+ * Approximate statistics based on the first 37 samples:
170
+ | | premise | hypothesis | label |
171
+ |:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:------------------------------------------------|
172
+ | type | string | string | int |
173
+ | details | <ul><li>min: 3 tokens</li><li>mean: 6.46 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.0 tokens</li><li>max: 3 tokens</li></ul> | <ul><li>0: ~21.62%</li><li>1: ~78.38%</li></ul> |
174
+ * Samples:
175
+ | premise | hypothesis | label |
176
+ |:-------------------------|:--------------------|:---------------|
177
+ | <code>明度が高い</code> | <code>bright</code> | <code>1</code> |
178
+ | <code>リラックス</code> | <code>cozy</code> | <code>1</code> |
179
+ | <code>not natural</code> | <code>cozy</code> | <code>0</code> |
180
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
181
+
182
+ ### Training Hyperparameters
183
+ #### Non-Default Hyperparameters
184
+
185
+ - `eval_strategy`: epoch
186
+ - `per_device_eval_batch_size`: 16
187
+ - `learning_rate`: 3e-05
188
+ - `warmup_ratio`: 0.1
189
+ - `fp16`: True
190
+ - `load_best_model_at_end`: True
191
+ - `ddp_find_unused_parameters`: False
192
+
193
+ #### All Hyperparameters
194
+ <details><summary>Click to expand</summary>
195
+
196
+ - `overwrite_output_dir`: False
197
+ - `do_predict`: False
198
+ - `eval_strategy`: epoch
199
+ - `prediction_loss_only`: True
200
+ - `per_device_train_batch_size`: 8
201
+ - `per_device_eval_batch_size`: 16
202
+ - `per_gpu_train_batch_size`: None
203
+ - `per_gpu_eval_batch_size`: None
204
+ - `gradient_accumulation_steps`: 1
205
+ - `eval_accumulation_steps`: None
206
+ - `torch_empty_cache_steps`: None
207
+ - `learning_rate`: 3e-05
208
+ - `weight_decay`: 0.0
209
+ - `adam_beta1`: 0.9
210
+ - `adam_beta2`: 0.999
211
+ - `adam_epsilon`: 1e-08
212
+ - `max_grad_norm`: 1.0
213
+ - `num_train_epochs`: 3
214
+ - `max_steps`: -1
215
+ - `lr_scheduler_type`: linear
216
+ - `lr_scheduler_kwargs`: {}
217
+ - `warmup_ratio`: 0.1
218
+ - `warmup_steps`: 0
219
+ - `log_level`: passive
220
+ - `log_level_replica`: warning
221
+ - `log_on_each_node`: True
222
+ - `logging_nan_inf_filter`: True
223
+ - `save_safetensors`: True
224
+ - `save_on_each_node`: False
225
+ - `save_only_model`: False
226
+ - `restore_callback_states_from_checkpoint`: False
227
+ - `no_cuda`: False
228
+ - `use_cpu`: False
229
+ - `use_mps_device`: False
230
+ - `seed`: 42
231
+ - `data_seed`: None
232
+ - `jit_mode_eval`: False
233
+ - `use_ipex`: False
234
+ - `bf16`: False
235
+ - `fp16`: True
236
+ - `fp16_opt_level`: O1
237
+ - `half_precision_backend`: auto
238
+ - `bf16_full_eval`: False
239
+ - `fp16_full_eval`: False
240
+ - `tf32`: None
241
+ - `local_rank`: 0
242
+ - `ddp_backend`: None
243
+ - `tpu_num_cores`: None
244
+ - `tpu_metrics_debug`: False
245
+ - `debug`: []
246
+ - `dataloader_drop_last`: False
247
+ - `dataloader_num_workers`: 0
248
+ - `dataloader_prefetch_factor`: None
249
+ - `past_index`: -1
250
+ - `disable_tqdm`: False
251
+ - `remove_unused_columns`: True
252
+ - `label_names`: None
253
+ - `load_best_model_at_end`: True
254
+ - `ignore_data_skip`: False
255
+ - `fsdp`: []
256
+ - `fsdp_min_num_params`: 0
257
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
258
+ - `fsdp_transformer_layer_cls_to_wrap`: None
259
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
260
+ - `deepspeed`: None
261
+ - `label_smoothing_factor`: 0.0
262
+ - `optim`: adamw_torch
263
+ - `optim_args`: None
264
+ - `adafactor`: False
265
+ - `group_by_length`: False
266
+ - `length_column_name`: length
267
+ - `ddp_find_unused_parameters`: False
268
+ - `ddp_bucket_cap_mb`: None
269
+ - `ddp_broadcast_buffers`: False
270
+ - `dataloader_pin_memory`: True
271
+ - `dataloader_persistent_workers`: False
272
+ - `skip_memory_metrics`: True
273
+ - `use_legacy_prediction_loop`: False
274
+ - `push_to_hub`: False
275
+ - `resume_from_checkpoint`: None
276
+ - `hub_model_id`: None
277
+ - `hub_strategy`: every_save
278
+ - `hub_private_repo`: None
279
+ - `hub_always_push`: False
280
+ - `gradient_checkpointing`: False
281
+ - `gradient_checkpointing_kwargs`: None
282
+ - `include_inputs_for_metrics`: False
283
+ - `include_for_metrics`: []
284
+ - `eval_do_concat_batches`: True
285
+ - `fp16_backend`: auto
286
+ - `push_to_hub_model_id`: None
287
+ - `push_to_hub_organization`: None
288
+ - `mp_parameters`:
289
+ - `auto_find_batch_size`: False
290
+ - `full_determinism`: False
291
+ - `torchdynamo`: None
292
+ - `ray_scope`: last
293
+ - `ddp_timeout`: 1800
294
+ - `torch_compile`: False
295
+ - `torch_compile_backend`: None
296
+ - `torch_compile_mode`: None
297
+ - `dispatch_batches`: None
298
+ - `split_batches`: None
299
+ - `include_tokens_per_second`: False
300
+ - `include_num_input_tokens_seen`: False
301
+ - `neftune_noise_alpha`: None
302
+ - `optim_target_modules`: None
303
+ - `batch_eval_metrics`: False
304
+ - `eval_on_start`: False
305
+ - `use_liger_kernel`: False
306
+ - `eval_use_gather_object`: False
307
+ - `average_tokens_across_devices`: False
308
+ - `prompts`: None
309
+ - `batch_sampler`: batch_sampler
310
+ - `multi_dataset_batch_sampler`: proportional
311
+
312
+ </details>
313
+
314
+ ### Training Logs
315
+ | Epoch | Step | Training Loss | Validation Loss |
316
+ |:------:|:----:|:-------------:|:---------------:|
317
+ | 0.1579 | 3 | 0.7116 | - |
318
+ | 0.3158 | 6 | 0.6971 | - |
319
+ | 0.4737 | 9 | 0.6825 | - |
320
+ | 0.6316 | 12 | 0.6449 | - |
321
+ | 0.7895 | 15 | 0.6452 | - |
322
+ | 0.9474 | 18 | 0.6618 | - |
323
+ | 1.0 | 19 | - | 0.5994 |
324
+ | 1.1053 | 21 | 0.6781 | - |
325
+ | 1.2632 | 24 | 0.5805 | - |
326
+ | 1.4211 | 27 | 0.6048 | - |
327
+ | 1.5789 | 30 | 0.5883 | - |
328
+ | 1.7368 | 33 | 0.6472 | - |
329
+ | 1.8947 | 36 | 0.6126 | - |
330
+ | 2.0 | 38 | - | 0.5694 |
331
+ | 2.0526 | 39 | 0.575 | - |
332
+ | 2.2105 | 42 | 0.6379 | - |
333
+ | 2.3684 | 45 | 0.6299 | - |
334
+ | 2.5263 | 48 | 0.5225 | - |
335
+ | 2.6842 | 51 | 0.5441 | - |
336
+ | 2.8421 | 54 | 0.6127 | - |
337
+ | 3.0 | 57 | 0.573 | 0.5617 |
338
+
339
+
340
+ ### Framework Versions
341
+ - Python: 3.10.16
342
+ - Sentence Transformers: 3.3.1
343
+ - Transformers: 4.48.0
344
+ - PyTorch: 2.4.0
345
+ - Accelerate: 1.2.1
346
+ - Datasets: 3.2.0
347
+ - Tokenizers: 0.21.0
348
+
349
+ ## Citation
350
+
351
+ ### BibTeX
352
+
353
+ #### Sentence Transformers and SoftmaxLoss
354
+ ```bibtex
355
+ @inproceedings{reimers-2019-sentence-bert,
356
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
357
+ author = "Reimers, Nils and Gurevych, Iryna",
358
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
359
+ month = "11",
360
+ year = "2019",
361
+ publisher = "Association for Computational Linguistics",
362
+ url = "https://arxiv.org/abs/1908.10084",
363
+ }
364
+ ```
365
+
366
+ <!--
367
+ ## Glossary
368
+
369
+ *Clearly define terms in order to be accessible across audiences.*
370
+ -->
371
+
372
+ <!--
373
+ ## Model Card Authors
374
+
375
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
376
+ -->
377
+
378
+ <!--
379
+ ## Model Card Contact
380
+
381
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
382
+ -->
checkpoint-57/config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.48.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
checkpoint-57/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.48.0",
5
+ "pytorch": "2.4.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
checkpoint-57/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9adff5cc3440e3163fc713c3508af93e4cdf2580204a5f3253f509d344bcf63
3
+ size 90864192
checkpoint-57/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
checkpoint-57/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42ace3a128329d6a0ed2d6503bb123fcbfa988321fb1762088753c45931caf82
3
+ size 180624954
checkpoint-57/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8369ca5e1e8a360a9227daef50205b69dcdb263e13307e78f3bfbbd9e67ecd95
3
+ size 13990
checkpoint-57/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d1250732875961518639811d0b8649d247d223f825fa666fb566c19af8f9474
3
+ size 1064
checkpoint-57/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
checkpoint-57/special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
checkpoint-57/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-57/tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
checkpoint-57/trainer_state.json ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.561651885509491,
3
+ "best_model_checkpoint": "autotrain-c0qmd-8o6a3/checkpoint-57",
4
+ "epoch": 3.0,
5
+ "eval_steps": 500,
6
+ "global_step": 57,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.15789473684210525,
13
+ "grad_norm": 0.7351207137107849,
14
+ "learning_rate": 1.5e-05,
15
+ "loss": 0.7116,
16
+ "step": 3
17
+ },
18
+ {
19
+ "epoch": 0.3157894736842105,
20
+ "grad_norm": 0.5466904640197754,
21
+ "learning_rate": 3e-05,
22
+ "loss": 0.6971,
23
+ "step": 6
24
+ },
25
+ {
26
+ "epoch": 0.47368421052631576,
27
+ "grad_norm": 0.6673880815505981,
28
+ "learning_rate": 2.823529411764706e-05,
29
+ "loss": 0.6825,
30
+ "step": 9
31
+ },
32
+ {
33
+ "epoch": 0.631578947368421,
34
+ "grad_norm": 0.7052972912788391,
35
+ "learning_rate": 2.647058823529412e-05,
36
+ "loss": 0.6449,
37
+ "step": 12
38
+ },
39
+ {
40
+ "epoch": 0.7894736842105263,
41
+ "grad_norm": 0.5568715929985046,
42
+ "learning_rate": 2.4705882352941174e-05,
43
+ "loss": 0.6452,
44
+ "step": 15
45
+ },
46
+ {
47
+ "epoch": 0.9473684210526315,
48
+ "grad_norm": 0.48849067091941833,
49
+ "learning_rate": 2.2941176470588233e-05,
50
+ "loss": 0.6618,
51
+ "step": 18
52
+ },
53
+ {
54
+ "epoch": 1.0,
55
+ "eval_loss": 0.5993797779083252,
56
+ "eval_runtime": 0.3867,
57
+ "eval_samples_per_second": 95.693,
58
+ "eval_steps_per_second": 7.759,
59
+ "step": 19
60
+ },
61
+ {
62
+ "epoch": 1.1052631578947367,
63
+ "grad_norm": 0.4476867616176605,
64
+ "learning_rate": 2.1176470588235296e-05,
65
+ "loss": 0.6781,
66
+ "step": 21
67
+ },
68
+ {
69
+ "epoch": 1.263157894736842,
70
+ "grad_norm": 0.5001488924026489,
71
+ "learning_rate": 1.9411764705882355e-05,
72
+ "loss": 0.5805,
73
+ "step": 24
74
+ },
75
+ {
76
+ "epoch": 1.4210526315789473,
77
+ "grad_norm": 0.4495070278644562,
78
+ "learning_rate": 1.7647058823529414e-05,
79
+ "loss": 0.6048,
80
+ "step": 27
81
+ },
82
+ {
83
+ "epoch": 1.5789473684210527,
84
+ "grad_norm": 0.4159792959690094,
85
+ "learning_rate": 1.5882352941176473e-05,
86
+ "loss": 0.5883,
87
+ "step": 30
88
+ },
89
+ {
90
+ "epoch": 1.736842105263158,
91
+ "grad_norm": 0.4267251789569855,
92
+ "learning_rate": 1.411764705882353e-05,
93
+ "loss": 0.6472,
94
+ "step": 33
95
+ },
96
+ {
97
+ "epoch": 1.8947368421052633,
98
+ "grad_norm": 0.4449743926525116,
99
+ "learning_rate": 1.2352941176470587e-05,
100
+ "loss": 0.6126,
101
+ "step": 36
102
+ },
103
+ {
104
+ "epoch": 2.0,
105
+ "eval_loss": 0.5694108605384827,
106
+ "eval_runtime": 0.4725,
107
+ "eval_samples_per_second": 78.3,
108
+ "eval_steps_per_second": 6.349,
109
+ "step": 38
110
+ },
111
+ {
112
+ "epoch": 2.0526315789473686,
113
+ "grad_norm": 0.4716056287288666,
114
+ "learning_rate": 1.0588235294117648e-05,
115
+ "loss": 0.575,
116
+ "step": 39
117
+ },
118
+ {
119
+ "epoch": 2.2105263157894735,
120
+ "grad_norm": 0.42344826459884644,
121
+ "learning_rate": 8.823529411764707e-06,
122
+ "loss": 0.6379,
123
+ "step": 42
124
+ },
125
+ {
126
+ "epoch": 2.3684210526315788,
127
+ "grad_norm": 0.4396233856678009,
128
+ "learning_rate": 7.058823529411765e-06,
129
+ "loss": 0.6299,
130
+ "step": 45
131
+ },
132
+ {
133
+ "epoch": 2.526315789473684,
134
+ "grad_norm": 0.4188365340232849,
135
+ "learning_rate": 5.294117647058824e-06,
136
+ "loss": 0.5225,
137
+ "step": 48
138
+ },
139
+ {
140
+ "epoch": 2.6842105263157894,
141
+ "grad_norm": 0.3908810019493103,
142
+ "learning_rate": 3.5294117647058825e-06,
143
+ "loss": 0.5441,
144
+ "step": 51
145
+ },
146
+ {
147
+ "epoch": 2.8421052631578947,
148
+ "grad_norm": 0.45354488492012024,
149
+ "learning_rate": 1.7647058823529412e-06,
150
+ "loss": 0.6127,
151
+ "step": 54
152
+ },
153
+ {
154
+ "epoch": 3.0,
155
+ "grad_norm": 1.0902165174484253,
156
+ "learning_rate": 0.0,
157
+ "loss": 0.573,
158
+ "step": 57
159
+ },
160
+ {
161
+ "epoch": 3.0,
162
+ "eval_loss": 0.561651885509491,
163
+ "eval_runtime": 0.2142,
164
+ "eval_samples_per_second": 172.751,
165
+ "eval_steps_per_second": 14.007,
166
+ "step": 57
167
+ }
168
+ ],
169
+ "logging_steps": 3,
170
+ "max_steps": 57,
171
+ "num_input_tokens_seen": 0,
172
+ "num_train_epochs": 3,
173
+ "save_steps": 500,
174
+ "stateful_callbacks": {
175
+ "EarlyStoppingCallback": {
176
+ "args": {
177
+ "early_stopping_patience": 5,
178
+ "early_stopping_threshold": 0.01
179
+ },
180
+ "attributes": {
181
+ "early_stopping_patience_counter": 1
182
+ }
183
+ },
184
+ "TrainerControl": {
185
+ "args": {
186
+ "should_epoch_stop": false,
187
+ "should_evaluate": false,
188
+ "should_log": false,
189
+ "should_save": true,
190
+ "should_training_stop": true
191
+ },
192
+ "attributes": {}
193
+ }
194
+ },
195
+ "total_flos": 0.0,
196
+ "train_batch_size": 8,
197
+ "trial_name": null,
198
+ "trial_params": null
199
+ }
checkpoint-57/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0255e9d8c8c7a50ad444af6c4e91f43871605610b7ce67b281ec900c1369c596
3
+ size 5624
checkpoint-57/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.48.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.48.0",
5
+ "pytorch": "2.4.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9adff5cc3440e3163fc713c3508af93e4cdf2580204a5f3253f509d344bcf63
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
runs/May22_07-40-29_r-nabil-tazi-ambiance-jp1-h6tl0cv3-5c570-4fjy8/events.out.tfevents.1747899633.r-nabil-tazi-ambiance-jp1-h6tl0cv3-5c570-4fjy8.113.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dc1c73ec18d9815d3829b966a64b6511523e4e522f80d843f300c58777d822d6
3
- size 4424
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a5ebb0f350deefcbe70172d75274cf7361cb43f2bc30faa44115709f8706332
3
+ size 9503
runs/May22_07-40-29_r-nabil-tazi-ambiance-jp1-h6tl0cv3-5c570-4fjy8/events.out.tfevents.1747899681.r-nabil-tazi-ambiance-jp1-h6tl0cv3-5c570-4fjy8.113.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e312b5307c4194ed5f1b305da19149ba4803300a8613ea0db5c7f599c34ba11b
3
+ size 354
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0255e9d8c8c7a50ad444af6c4e91f43871605610b7ce67b281ec900c1369c596
3
+ size 5624
training_params.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "data_path": "autotrain-c0qmd-8o6a3/autotrain-data",
3
+ "model": "sentence-transformers/all-MiniLM-L6-v2",
4
+ "lr": 3e-05,
5
+ "epochs": 3,
6
+ "max_seq_length": 128,
7
+ "batch_size": 8,
8
+ "warmup_ratio": 0.1,
9
+ "gradient_accumulation": 1,
10
+ "optimizer": "adamw_torch",
11
+ "scheduler": "linear",
12
+ "weight_decay": 0.0,
13
+ "max_grad_norm": 1.0,
14
+ "seed": 42,
15
+ "train_split": "train",
16
+ "valid_split": "validation",
17
+ "logging_steps": -1,
18
+ "project_name": "autotrain-c0qmd-8o6a3",
19
+ "auto_find_batch_size": false,
20
+ "mixed_precision": "fp16",
21
+ "save_total_limit": 1,
22
+ "push_to_hub": true,
23
+ "eval_strategy": "epoch",
24
+ "username": "nabil-tazi",
25
+ "log": "tensorboard",
26
+ "early_stopping_patience": 5,
27
+ "early_stopping_threshold": 0.01,
28
+ "trainer": "pair_class",
29
+ "sentence1_column": "autotrain_sentence1",
30
+ "sentence2_column": "autotrain_sentence2",
31
+ "sentence3_column": "autotrain_sentence3",
32
+ "target_column": "autotrain_target"
33
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff