muneebharoon's picture
End of training
1142895 verified
metadata
language:
  - ks
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - muneebharoon/whisper-kashmiri
metrics:
  - wer
model-index:
  - name: Whisper Medium ks - Muneeb Haroon
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: whisper-kashmiri
          type: muneebharoon/whisper-kashmiri
          args: 'config: ks, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 42.32558139534884

Whisper Medium ks - Muneeb Haroon

This model is a fine-tuned version of openai/whisper-medium on the whisper-kashmiri dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2108
  • Wer: 42.3256

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0024 71.43 1000 1.0586 44.0930
0.0002 142.86 2000 1.2108 42.3256
0.0001 214.29 3000 1.3416 42.5581
0.0 285.71 4000 1.4482 42.9302
0.0 357.14 5000 1.5533 42.9302
0.0 428.57 6000 1.6342 43.4884
0.0 500.0 7000 1.7142 43.1628
0.0 571.43 8000 1.7657 43.4419
0.0 642.86 9000 1.8178 43.5349
0.0 714.29 10000 1.8312 43.6744

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2