--- language: - ks license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - muneebharoon/whisper-kashmiri metrics: - wer model-index: - name: Whisper Medium ks - Muneeb Haroon results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: whisper-kashmiri type: muneebharoon/whisper-kashmiri args: 'config: ks, split: test' metrics: - name: Wer type: wer value: 42.32558139534884 --- # Whisper Medium ks - Muneeb Haroon This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the whisper-kashmiri dataset. It achieves the following results on the evaluation set: - Loss: 1.2108 - Wer: 42.3256 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:-------:| | 0.0024 | 71.43 | 1000 | 1.0586 | 44.0930 | | 0.0002 | 142.86 | 2000 | 1.2108 | 42.3256 | | 0.0001 | 214.29 | 3000 | 1.3416 | 42.5581 | | 0.0 | 285.71 | 4000 | 1.4482 | 42.9302 | | 0.0 | 357.14 | 5000 | 1.5533 | 42.9302 | | 0.0 | 428.57 | 6000 | 1.6342 | 43.4884 | | 0.0 | 500.0 | 7000 | 1.7142 | 43.1628 | | 0.0 | 571.43 | 8000 | 1.7657 | 43.4419 | | 0.0 | 642.86 | 9000 | 1.8178 | 43.5349 | | 0.0 | 714.29 | 10000 | 1.8312 | 43.6744 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2