muhtasham's picture
update model card README.md
fedabe9
|
raw
history blame
2.55 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - eoir_privacy
metrics:
  - accuracy
  - f1
model-index:
  - name: bert_uncased_L-4_H-512_A-8-finetuned-eoir_privacy-longer
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: eoir_privacy
          type: eoir_privacy
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9476327116212339
          - name: F1
            type: f1
            value: 0.8805237315875615

bert_uncased_L-4_H-512_A-8-finetuned-eoir_privacy-longer

This model is a fine-tuned version of google/bert_uncased_L-4_H-512_A-8 on the eoir_privacy dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1738
  • Accuracy: 0.9476
  • F1: 0.8805

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 63 0.2004 0.9261 0.8298
No log 2.0 126 0.2042 0.9297 0.8435
No log 3.0 189 0.1888 0.9362 0.8558
No log 4.0 252 0.1879 0.9383 0.8532
No log 5.0 315 0.1715 0.9462 0.8788
No log 6.0 378 0.1761 0.9448 0.8706
No log 7.0 441 0.1730 0.9455 0.8774
0.1078 8.0 504 0.1753 0.9448 0.8772
0.1078 9.0 567 0.1721 0.9469 0.8791
0.1078 10.0 630 0.1738 0.9476 0.8805

Framework versions

  • Transformers 4.21.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1