bert_uncased_L-4_H-512_A-8-finetuned-eoir_privacy-longer
This model is a fine-tuned version of google/bert_uncased_L-4_H-512_A-8 on the eoir_privacy dataset. It achieves the following results on the evaluation set:
- Loss: 0.1738
- Accuracy: 0.9476
- F1: 0.8805
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 1.0 | 63 | 0.2004 | 0.9261 | 0.8298 |
No log | 2.0 | 126 | 0.2042 | 0.9297 | 0.8435 |
No log | 3.0 | 189 | 0.1888 | 0.9362 | 0.8558 |
No log | 4.0 | 252 | 0.1879 | 0.9383 | 0.8532 |
No log | 5.0 | 315 | 0.1715 | 0.9462 | 0.8788 |
No log | 6.0 | 378 | 0.1761 | 0.9448 | 0.8706 |
No log | 7.0 | 441 | 0.1730 | 0.9455 | 0.8774 |
0.1078 | 8.0 | 504 | 0.1753 | 0.9448 | 0.8772 |
0.1078 | 9.0 | 567 | 0.1721 | 0.9469 | 0.8791 |
0.1078 | 10.0 | 630 | 0.1738 | 0.9476 | 0.8805 |
Framework versions
- Transformers 4.21.1
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
- Downloads last month
- 19
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Evaluation results
- Accuracy on eoir_privacyself-reported0.948
- F1 on eoir_privacyself-reported0.881