miosipof's picture
End of training
94a224a verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - balbus-classifier
metrics:
  - accuracy
model-index:
  - name: miosipof/whisper-medium-ft-balbus-sep28k-v1.4
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: Apple dataset
          type: balbus-classifier
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8006894390473206

miosipof/whisper-medium-ft-balbus-sep28k-v1.4

This model is a fine-tuned version of openai/whisper-medium on the Apple dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1096
  • Accuracy: 0.8007

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.5
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1827 0.0313 50 0.1708 0.5653
0.1681 0.0627 100 0.1632 0.6341
0.1603 0.0940 150 0.1498 0.6924
0.1443 0.1254 200 0.1371 0.7404
0.139 0.1567 250 0.1258 0.7640
0.1194 0.1880 300 0.1158 0.7880
0.105 0.2194 350 0.1173 0.7914
0.1114 0.2507 400 0.1143 0.7965
0.1214 0.2820 450 0.1109 0.8001
0.1178 0.3134 500 0.1096 0.8007

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.2.0
  • Datasets 3.2.0
  • Tokenizers 0.20.3