--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - balbus-classifier metrics: - accuracy model-index: - name: miosipof/whisper-medium-ft-balbus-sep28k-v1.4 results: - task: name: Audio Classification type: audio-classification dataset: name: Apple dataset type: balbus-classifier config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8006894390473206 --- # miosipof/whisper-medium-ft-balbus-sep28k-v1.4 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Apple dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.1096 - Accuracy: 0.8007 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.5 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.1827 | 0.0313 | 50 | 0.1708 | 0.5653 | | 0.1681 | 0.0627 | 100 | 0.1632 | 0.6341 | | 0.1603 | 0.0940 | 150 | 0.1498 | 0.6924 | | 0.1443 | 0.1254 | 200 | 0.1371 | 0.7404 | | 0.139 | 0.1567 | 250 | 0.1258 | 0.7640 | | 0.1194 | 0.1880 | 300 | 0.1158 | 0.7880 | | 0.105 | 0.2194 | 350 | 0.1173 | 0.7914 | | 0.1114 | 0.2507 | 400 | 0.1143 | 0.7965 | | 0.1214 | 0.2820 | 450 | 0.1109 | 0.8001 | | 0.1178 | 0.3134 | 500 | 0.1096 | 0.8007 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.2.0 - Datasets 3.2.0 - Tokenizers 0.20.3