mbegerez's picture
Add new SentenceTransformer model
f0de076 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:6300
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
  - source_sentence: >-
      As of December 31, 2023, we owned approximately 10.2% of the common stock
      outstanding of Tractor.
    sentences:
      - >-
        What was the percentage of trading days in 2023 where trading-related
        revenue was recorded as positive?
      - >-
        What percentage of Tractor's common stock did we own as of December 31,
        2023?
      - What types of services does The Charles Schwab Corporation provide?
  - source_sentence: >-
      All significant intercompany balances and transactions have been
      eliminated in consolidation.
    sentences:
      - How does Costco manage labor costs in its warehouse operations?
      - >-
        How are intercompany balances and transactions treated in the
        consolidated financial statements of Palantir Technologies Inc.?
      - How does LinkedIn intend to create economic opportunity?
  - source_sentence: >-
      In May 2023, the Company announced a new share repurchase program of up to
      $90 billion and raised its quarterly dividend from $0.23 to $0.24 per
      share beginning in May 2023. During 2023, the Company repurchased $76.6
      billion of its common stock and paid dividends and dividend equivalents of
      $15.0 billion.
    sentences:
      - >-
        When did the Company announce a new share repurchase program and raise
        its quarterly dividend?
      - >-
        What is the purpose of adding research and development expenses and
        general and administrative expenses to the loss from operations when
        calculating the contribution margin?
      - >-
        What award did Delta Air Lines receive in January 2024 for operational
        excellence?
  - source_sentence: >-
      FedEx exceeded its FedEx Cares 50 by 50 goal of positively impacting 50
      million people around the world by the company's 50th anniversary in April
      2023.
    sentences:
      - >-
        What were the total mall revenues and total mall operating expenses
        reported for the year ended December 31, 2022?
      - By how much did Google Cloud revenues increase in 2023?
      - >-
        What was the goal of the FedEx Cares 50 by 50 initiative, and was it
        achieved by April 2023?
  - source_sentence: >-
      Belonging - Build a Walmart for everyone: a diverse, equitable and
      inclusive company, where associates' ideas and opinions matter. We are
      focused on having an inclusive culture where everyone feels they belong.
      We publish our diversity representation twice yearly, and hold ourselves
      accountable to providing recurring culture, diversity, equity, and
      inclusion updates to senior leadership, including our President and CEO,
      and members of the Board of Directors. Of the approximately 2.1 million
      associates employed worldwide, 52% identify as women. In the U.S., 50% of
      the approximately 1.6 million associates identify as people of color. We
      review our processes regarding our commitment to fair-pay practices.
    sentences:
      - >-
        How does Walmart support diversity, equity, and inclusion within its
        workforce?
      - What was the net sales of the company in fiscal 2022?
      - >-
        What accounting policy does Garmin employ for handling shipping and
        handling costs?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: SentenceTransformer based on BAAI/bge-base-en-v1.5
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.7071428571428572
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8542857142857143
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.89
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9285714285714286
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.7071428571428572
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2847619047619047
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.178
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09285714285714286
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.7071428571428572
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8542857142857143
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.89
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9285714285714286
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8212277326655251
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7864943310657593
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7895361542306398
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.7128571428571429
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8571428571428571
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8842857142857142
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9242857142857143
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.7128571428571429
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2857142857142857
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17685714285714282
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09242857142857142
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.7128571428571429
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8571428571428571
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8842857142857142
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9242857142857143
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8226399488099605
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7896332199546482
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7929502856502229
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.71
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8485714285714285
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.89
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9214285714285714
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.71
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.28285714285714286
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.178
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09214285714285712
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.71
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8485714285714285
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.89
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9214285714285714
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8191812959358512
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7859285714285714
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.789362089774964
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.6828571428571428
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.83
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8671428571428571
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9142857142857143
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6828571428571428
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27666666666666667
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1734285714285714
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09142857142857143
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6828571428571428
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.83
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8671428571428571
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9142857142857143
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8009128093060571
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7644438775510204
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7677382726581595
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.65
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7928571428571428
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.83
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8771428571428571
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.65
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2642857142857143
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16599999999999998
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0877142857142857
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.65
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7928571428571428
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.83
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8771428571428571
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7650380715261241
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.728987528344671
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7337694116995703
            name: Cosine Map@100

SentenceTransformer based on BAAI/bge-base-en-v1.5

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("mbegerez/bge-base-financial-matryoshka")
# Run inference
sentences = [
    "Belonging - Build a Walmart for everyone: a diverse, equitable and inclusive company, where associates' ideas and opinions matter. We are focused on having an inclusive culture where everyone feels they belong. We publish our diversity representation twice yearly, and hold ourselves accountable to providing recurring culture, diversity, equity, and inclusion updates to senior leadership, including our President and CEO, and members of the Board of Directors. Of the approximately 2.1 million associates employed worldwide, 52% identify as women. In the U.S., 50% of the approximately 1.6 million associates identify as people of color. We review our processes regarding our commitment to fair-pay practices.",
    'How does Walmart support diversity, equity, and inclusion within its workforce?',
    'What was the net sales of the company in fiscal 2022?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.7071
cosine_accuracy@3 0.8543
cosine_accuracy@5 0.89
cosine_accuracy@10 0.9286
cosine_precision@1 0.7071
cosine_precision@3 0.2848
cosine_precision@5 0.178
cosine_precision@10 0.0929
cosine_recall@1 0.7071
cosine_recall@3 0.8543
cosine_recall@5 0.89
cosine_recall@10 0.9286
cosine_ndcg@10 0.8212
cosine_mrr@10 0.7865
cosine_map@100 0.7895

Information Retrieval

Metric Value
cosine_accuracy@1 0.7129
cosine_accuracy@3 0.8571
cosine_accuracy@5 0.8843
cosine_accuracy@10 0.9243
cosine_precision@1 0.7129
cosine_precision@3 0.2857
cosine_precision@5 0.1769
cosine_precision@10 0.0924
cosine_recall@1 0.7129
cosine_recall@3 0.8571
cosine_recall@5 0.8843
cosine_recall@10 0.9243
cosine_ndcg@10 0.8226
cosine_mrr@10 0.7896
cosine_map@100 0.793

Information Retrieval

Metric Value
cosine_accuracy@1 0.71
cosine_accuracy@3 0.8486
cosine_accuracy@5 0.89
cosine_accuracy@10 0.9214
cosine_precision@1 0.71
cosine_precision@3 0.2829
cosine_precision@5 0.178
cosine_precision@10 0.0921
cosine_recall@1 0.71
cosine_recall@3 0.8486
cosine_recall@5 0.89
cosine_recall@10 0.9214
cosine_ndcg@10 0.8192
cosine_mrr@10 0.7859
cosine_map@100 0.7894

Information Retrieval

Metric Value
cosine_accuracy@1 0.6829
cosine_accuracy@3 0.83
cosine_accuracy@5 0.8671
cosine_accuracy@10 0.9143
cosine_precision@1 0.6829
cosine_precision@3 0.2767
cosine_precision@5 0.1734
cosine_precision@10 0.0914
cosine_recall@1 0.6829
cosine_recall@3 0.83
cosine_recall@5 0.8671
cosine_recall@10 0.9143
cosine_ndcg@10 0.8009
cosine_mrr@10 0.7644
cosine_map@100 0.7677

Information Retrieval

Metric Value
cosine_accuracy@1 0.65
cosine_accuracy@3 0.7929
cosine_accuracy@5 0.83
cosine_accuracy@10 0.8771
cosine_precision@1 0.65
cosine_precision@3 0.2643
cosine_precision@5 0.166
cosine_precision@10 0.0877
cosine_recall@1 0.65
cosine_recall@3 0.7929
cosine_recall@5 0.83
cosine_recall@10 0.8771
cosine_ndcg@10 0.765
cosine_mrr@10 0.729
cosine_map@100 0.7338

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 6 tokens
    • mean: 44.63 tokens
    • max: 301 tokens
    • min: 7 tokens
    • mean: 20.6 tokens
    • max: 45 tokens
  • Samples:
    positive anchor
    Some key challenges and trends addressed in the 'Trends and Uncertainties' section of the MD&A include material events such as the decreasing but continuous supply chain constraints, uneven demands, new technology adoptions, and a conservative customer spending environment within a mixed macroeconomic context. What are some of the key challenges and developments that Hewlett Packard Enterprise highlighted in the 'Trends and Uncertainties' section of their MD&A for fiscal 2022?
    Supply of Components Although most components essential to the Company’s business are generally available from multiple sources, certain components are currently obtained from single or limited sources. From which sources does Apple obtain certain essential components?
    The document lists PPD reinstatement premiums as showing an unfavorable (2) million U.S. dollars adjustment. What were the reinstatement premiums related to PPD expenses for the year shown in the document?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_768_cosine_ndcg@10 dim_512_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
0.8122 10 25.1822 - - - - -
1.0 13 - 0.8089 0.8069 0.8069 0.7846 0.7410
1.5685 20 11.1815 - - - - -
2.0 26 - 0.8174 0.8224 0.8189 0.7988 0.7594
2.3249 30 7.2855 - - - - -
3.0 39 - 0.8205 0.8225 0.8195 0.7999 0.7636
3.0812 40 7.356 - - - - -
3.731 48 - 0.8212 0.8226 0.8192 0.8009 0.765
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.12
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.2
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}