SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("mbegerez/bge-base-financial-matryoshka")
# Run inference
sentences = [
"Belonging - Build a Walmart for everyone: a diverse, equitable and inclusive company, where associates' ideas and opinions matter. We are focused on having an inclusive culture where everyone feels they belong. We publish our diversity representation twice yearly, and hold ourselves accountable to providing recurring culture, diversity, equity, and inclusion updates to senior leadership, including our President and CEO, and members of the Board of Directors. Of the approximately 2.1 million associates employed worldwide, 52% identify as women. In the U.S., 50% of the approximately 1.6 million associates identify as people of color. We review our processes regarding our commitment to fair-pay practices.",
'How does Walmart support diversity, equity, and inclusion within its workforce?',
'What was the net sales of the company in fiscal 2022?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 768 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7071 |
cosine_accuracy@3 | 0.8543 |
cosine_accuracy@5 | 0.89 |
cosine_accuracy@10 | 0.9286 |
cosine_precision@1 | 0.7071 |
cosine_precision@3 | 0.2848 |
cosine_precision@5 | 0.178 |
cosine_precision@10 | 0.0929 |
cosine_recall@1 | 0.7071 |
cosine_recall@3 | 0.8543 |
cosine_recall@5 | 0.89 |
cosine_recall@10 | 0.9286 |
cosine_ndcg@10 | 0.8212 |
cosine_mrr@10 | 0.7865 |
cosine_map@100 | 0.7895 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 512 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7129 |
cosine_accuracy@3 | 0.8571 |
cosine_accuracy@5 | 0.8843 |
cosine_accuracy@10 | 0.9243 |
cosine_precision@1 | 0.7129 |
cosine_precision@3 | 0.2857 |
cosine_precision@5 | 0.1769 |
cosine_precision@10 | 0.0924 |
cosine_recall@1 | 0.7129 |
cosine_recall@3 | 0.8571 |
cosine_recall@5 | 0.8843 |
cosine_recall@10 | 0.9243 |
cosine_ndcg@10 | 0.8226 |
cosine_mrr@10 | 0.7896 |
cosine_map@100 | 0.793 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 256 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.71 |
cosine_accuracy@3 | 0.8486 |
cosine_accuracy@5 | 0.89 |
cosine_accuracy@10 | 0.9214 |
cosine_precision@1 | 0.71 |
cosine_precision@3 | 0.2829 |
cosine_precision@5 | 0.178 |
cosine_precision@10 | 0.0921 |
cosine_recall@1 | 0.71 |
cosine_recall@3 | 0.8486 |
cosine_recall@5 | 0.89 |
cosine_recall@10 | 0.9214 |
cosine_ndcg@10 | 0.8192 |
cosine_mrr@10 | 0.7859 |
cosine_map@100 | 0.7894 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 128 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6829 |
cosine_accuracy@3 | 0.83 |
cosine_accuracy@5 | 0.8671 |
cosine_accuracy@10 | 0.9143 |
cosine_precision@1 | 0.6829 |
cosine_precision@3 | 0.2767 |
cosine_precision@5 | 0.1734 |
cosine_precision@10 | 0.0914 |
cosine_recall@1 | 0.6829 |
cosine_recall@3 | 0.83 |
cosine_recall@5 | 0.8671 |
cosine_recall@10 | 0.9143 |
cosine_ndcg@10 | 0.8009 |
cosine_mrr@10 | 0.7644 |
cosine_map@100 | 0.7677 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 64 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.65 |
cosine_accuracy@3 | 0.7929 |
cosine_accuracy@5 | 0.83 |
cosine_accuracy@10 | 0.8771 |
cosine_precision@1 | 0.65 |
cosine_precision@3 | 0.2643 |
cosine_precision@5 | 0.166 |
cosine_precision@10 | 0.0877 |
cosine_recall@1 | 0.65 |
cosine_recall@3 | 0.7929 |
cosine_recall@5 | 0.83 |
cosine_recall@10 | 0.8771 |
cosine_ndcg@10 | 0.765 |
cosine_mrr@10 | 0.729 |
cosine_map@100 | 0.7338 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 6 tokens
- mean: 44.63 tokens
- max: 301 tokens
- min: 7 tokens
- mean: 20.6 tokens
- max: 45 tokens
- Samples:
positive anchor Some key challenges and trends addressed in the 'Trends and Uncertainties' section of the MD&A include material events such as the decreasing but continuous supply chain constraints, uneven demands, new technology adoptions, and a conservative customer spending environment within a mixed macroeconomic context.
What are some of the key challenges and developments that Hewlett Packard Enterprise highlighted in the 'Trends and Uncertainties' section of their MD&A for fiscal 2022?
Supply of Components Although most components essential to the Company’s business are generally available from multiple sources, certain components are currently obtained from single or limited sources.
From which sources does Apple obtain certain essential components?
The document lists PPD reinstatement premiums as showing an unfavorable (2) million U.S. dollars adjustment.
What were the reinstatement premiums related to PPD expenses for the year shown in the document?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 25.1822 | - | - | - | - | - |
1.0 | 13 | - | 0.8089 | 0.8069 | 0.8069 | 0.7846 | 0.7410 |
1.5685 | 20 | 11.1815 | - | - | - | - | - |
2.0 | 26 | - | 0.8174 | 0.8224 | 0.8189 | 0.7988 | 0.7594 |
2.3249 | 30 | 7.2855 | - | - | - | - | - |
3.0 | 39 | - | 0.8205 | 0.8225 | 0.8195 | 0.7999 | 0.7636 |
3.0812 | 40 | 7.356 | - | - | - | - | - |
3.731 | 48 | - | 0.8212 | 0.8226 | 0.8192 | 0.8009 | 0.765 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for mbegerez/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.707
- Cosine Accuracy@3 on dim 768self-reported0.854
- Cosine Accuracy@5 on dim 768self-reported0.890
- Cosine Accuracy@10 on dim 768self-reported0.929
- Cosine Precision@1 on dim 768self-reported0.707
- Cosine Precision@3 on dim 768self-reported0.285
- Cosine Precision@5 on dim 768self-reported0.178
- Cosine Precision@10 on dim 768self-reported0.093
- Cosine Recall@1 on dim 768self-reported0.707
- Cosine Recall@3 on dim 768self-reported0.854