UniSE-MLLM / README.md
marsh123's picture
Update README.md
a5492eb verified
---
license: mit
language:
- en
metrics:
- recall
base_model:
- Qwen/Qwen2-VL-2B-Instruct
library_name: transformers == 4.45.2
---
<h1 align="center">Vis-IR: Unifying Search With Visualized Information Retrieval</h1>
<p align="center">
<a href="https://arxiv.org/abs/2502.11431">
<img alt="Build" src="http://img.shields.io/badge/arXiv-2502.11431-B31B1B.svg">
</a>
<a href="https://github.com/VectorSpaceLab/Vis-IR">
<img alt="Build" src="https://img.shields.io/badge/Github-Code-blue">
</a>
<a href="https://huggingface.co/datasets/marsh123/VIRA/">
<img alt="Build" src="https://img.shields.io/badge/πŸ€— Datasets-VIRA-yellow">
</a>
<a href="https://huggingface.co/datasets/marsh123/MVRB">
<img alt="Build" src="https://img.shields.io/badge/πŸ€— Datasets-MVRB-yellow">
</a>
<!-- <a href="">
<img alt="Build" src="https://img.shields.io/badge/πŸ€— Model-UniSE CLIP-yellow">
</a> -->
<a href="https://huggingface.co/marsh123/UniSE">
<img alt="Build" src="https://img.shields.io/badge/πŸ€— Model-UniSE MLLM-yellow">
</a>
<a href="https://huggingface.co/BAAI/BGE-VL-Screenshot">
<img alt="Build" src="https://img.shields.io/badge/πŸ€— Model-BGE VL Screenshot-yellow">
</a>
</p>
<h4 align="center">
<p>
<a href=#news>News</a> |
<a href=#release-plan>Release Plan</a> |
<a href=#overview>Overview</a> |
<a href="#license">License</a> |
<a href="#citation">Citation</a>
<p>
</h4>
## News
```2025-06-23``` πŸš€πŸš€ We release [BGE-VL-Screenshot](https://huggingface.co/BAAI/BGE-VL-Screenshot), an enhanced version of UniSE_MLLM with improved multilingual capabilities.
```2025-04-06``` πŸš€πŸš€ MVRB Dataset are released on Huggingface: [MVRB](https://huggingface.co/datasets/marsh123/MVRB)
```2025-04-02``` πŸš€πŸš€ VIRA Dataset are released on Huggingface: [VIRA](https://huggingface.co/datasets/marsh123/VIRA/)
```2025-04-01``` πŸš€πŸš€ UniSE models are released on Huggingface: [UniSE-MLMM](https://huggingface.co/marsh123/UniSE-MLLM/)
```2025-02-17``` πŸŽ‰πŸŽ‰ Release our paper: [Any Information Is Just Worth One Single Screenshot: Unifying Search With Visualized Information Retrieval](https://arxiv.org/abs/2502.11431).
## Release Plan
- [x] Paper
- [x] UniSE models
- [x] VIRA Dataset
- [x] MVRB benchmark
- [ ] Evaluation code
- [ ] Fine-tuning code
## Overview
In this work, we formally define an emerging IR paradigm called Visualized Information Retrieval, or **VisIR**, where multimodal information, such as texts, images, tables and charts, is jointly represented by a unified visual format called **Screenshots**, for various retrieval applications. We further make three key contributions for VisIR. First, we create **VIRA** (Vis-IR Aggregation), a large-scale dataset comprising a vast collection of screenshots from diverse sources, carefully curated into captioned and questionanswer formats. Second, we develop **UniSE** (Universal Screenshot Embeddings), a family of retrieval models that enable screenshots to query or be queried across arbitrary data modalities. Finally, we construct **MVRB** (Massive Visualized IR Benchmark), a comprehensive benchmark covering a variety of task forms and application scenarios. Through extensive evaluations on MVRB, we highlight the deficiency from existing multimodal retrievers and the substantial improvements made by UniSE.
## Model Usage
> Our code works well on transformers==4.45.2, and we recommend using this version.
### 1. UniSE-MLLM Models
```python
import torch
from transformers import AutoModel
MODEL_NAME = "marsh123/UniSE-MLLM"
model = AutoModel.from_pretrained(MODEL_NAME, trust_remote_code=True) # You must set trust_remote_code=True
model.set_processor(MODEL_NAME)
with torch.no_grad():
device = torch.device("cuda:0")
model = model.to(device)
model.eval()
query_inputs = model.data_process(
images=["./assets/query_1.png", "./assets/query_2.png"],
text=["After a 17% drop, what is Nvidia's closing stock price?", "I would like to see a detailed and intuitive performance comparison between the two models."],
q_or_c="query",
task_instruction="Represent the given image with the given query."
)
candidate_inputs = model.data_process(
images=["./assets/positive_1.jpeg", "./assets/neg_1.jpeg",
"./assets/positive_2.jpeg", "./assets/neg_2.jpeg"],
q_or_c="candidate"
)
query_embeddings = model(**query_inputs)
candidate_embeddings = model(**candidate_inputs)
scores = torch.matmul(query_embeddings, candidate_embeddings.T)
print(scores)
```
## Performance on MVRB
MVRB is a comprehensive benchmark designed for the retrieval task centered on screenshots. It includes four meta tasks: Screenshot Retrieval (SR), Composed Screenshot Retrieval (CSR), Screenshot QA (SQA), and Open-Vocabulary Classification (OVC). We evaluate three main types of retrievers on MVRB: OCR+Text Retrievers, General Multimodal Retrievers, and Screenshot Document Retrievers. Our proposed UniSE-MLLM achieves state-of-the-art (SOTA) performance on this benchmark.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/66164f6245336ca774679611/igMgX-BvQ55Dyxuw26sgs.png)
## License
Vis-IR is licensed under the [MIT License](LICENSE).
## Citation
If you find this model useful, please cite:
```
@article{liu2025any,
title={Any Information Is Just Worth One Single Screenshot: Unifying Search With Visualized Information Retrieval},
author={Liu, Ze and Liang, Zhengyang and Zhou, Junjie and Liu, Zheng and Lian, Defu},
journal={arXiv preprint arXiv:2502.11431},
year={2025}
}
```