File size: 5,759 Bytes
882c8a3 7113963 882c8a3 cd0eacf 882c8a3 70bad3a 882c8a3 70bad3a 882c8a3 baaade3 882c8a3 a5492eb baaade3 bfcc6e9 cd0eacf f46b6ce 70bad3a f46b6ce 882c8a3 f46b6ce cd0eacf 882c8a3 f46b6ce 882c8a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
---
license: mit
language:
- en
metrics:
- recall
base_model:
- Qwen/Qwen2-VL-2B-Instruct
library_name: transformers == 4.45.2
---
<h1 align="center">Vis-IR: Unifying Search With Visualized Information Retrieval</h1>
<p align="center">
<a href="https://arxiv.org/abs/2502.11431">
<img alt="Build" src="http://img.shields.io/badge/arXiv-2502.11431-B31B1B.svg">
</a>
<a href="https://github.com/VectorSpaceLab/Vis-IR">
<img alt="Build" src="https://img.shields.io/badge/Github-Code-blue">
</a>
<a href="https://huggingface.co/datasets/marsh123/VIRA/">
<img alt="Build" src="https://img.shields.io/badge/π€ Datasets-VIRA-yellow">
</a>
<a href="https://huggingface.co/datasets/marsh123/MVRB">
<img alt="Build" src="https://img.shields.io/badge/π€ Datasets-MVRB-yellow">
</a>
<!-- <a href="">
<img alt="Build" src="https://img.shields.io/badge/π€ Model-UniSE CLIP-yellow">
</a> -->
<a href="https://huggingface.co/marsh123/UniSE">
<img alt="Build" src="https://img.shields.io/badge/π€ Model-UniSE MLLM-yellow">
</a>
<a href="https://huggingface.co/BAAI/BGE-VL-Screenshot">
<img alt="Build" src="https://img.shields.io/badge/π€ Model-BGE VL Screenshot-yellow">
</a>
</p>
<h4 align="center">
<p>
<a href=#news>News</a> |
<a href=#release-plan>Release Plan</a> |
<a href=#overview>Overview</a> |
<a href="#license">License</a> |
<a href="#citation">Citation</a>
<p>
</h4>
## News
```2025-06-23``` ππ We release [BGE-VL-Screenshot](https://huggingface.co/BAAI/BGE-VL-Screenshot), an enhanced version of UniSE_MLLM with improved multilingual capabilities.
```2025-04-06``` ππ MVRB Dataset are released on Huggingface: [MVRB](https://huggingface.co/datasets/marsh123/MVRB)
```2025-04-02``` ππ VIRA Dataset are released on Huggingface: [VIRA](https://huggingface.co/datasets/marsh123/VIRA/)
```2025-04-01``` ππ UniSE models are released on Huggingface: [UniSE-MLMM](https://huggingface.co/marsh123/UniSE-MLLM/)
```2025-02-17``` ππ Release our paper: [Any Information Is Just Worth One Single Screenshot: Unifying Search With Visualized Information Retrieval](https://arxiv.org/abs/2502.11431).
## Release Plan
- [x] Paper
- [x] UniSE models
- [x] VIRA Dataset
- [x] MVRB benchmark
- [ ] Evaluation code
- [ ] Fine-tuning code
## Overview
In this work, we formally define an emerging IR paradigm called Visualized Information Retrieval, or **VisIR**, where multimodal information, such as texts, images, tables and charts, is jointly represented by a unified visual format called **Screenshots**, for various retrieval applications. We further make three key contributions for VisIR. First, we create **VIRA** (Vis-IR Aggregation), a large-scale dataset comprising a vast collection of screenshots from diverse sources, carefully curated into captioned and questionanswer formats. Second, we develop **UniSE** (Universal Screenshot Embeddings), a family of retrieval models that enable screenshots to query or be queried across arbitrary data modalities. Finally, we construct **MVRB** (Massive Visualized IR Benchmark), a comprehensive benchmark covering a variety of task forms and application scenarios. Through extensive evaluations on MVRB, we highlight the deficiency from existing multimodal retrievers and the substantial improvements made by UniSE.
## Model Usage
> Our code works well on transformers==4.45.2, and we recommend using this version.
### 1. UniSE-MLLM Models
```python
import torch
from transformers import AutoModel
MODEL_NAME = "marsh123/UniSE-MLLM"
model = AutoModel.from_pretrained(MODEL_NAME, trust_remote_code=True) # You must set trust_remote_code=True
model.set_processor(MODEL_NAME)
with torch.no_grad():
device = torch.device("cuda:0")
model = model.to(device)
model.eval()
query_inputs = model.data_process(
images=["./assets/query_1.png", "./assets/query_2.png"],
text=["After a 17% drop, what is Nvidia's closing stock price?", "I would like to see a detailed and intuitive performance comparison between the two models."],
q_or_c="query",
task_instruction="Represent the given image with the given query."
)
candidate_inputs = model.data_process(
images=["./assets/positive_1.jpeg", "./assets/neg_1.jpeg",
"./assets/positive_2.jpeg", "./assets/neg_2.jpeg"],
q_or_c="candidate"
)
query_embeddings = model(**query_inputs)
candidate_embeddings = model(**candidate_inputs)
scores = torch.matmul(query_embeddings, candidate_embeddings.T)
print(scores)
```
## Performance on MVRB
MVRB is a comprehensive benchmark designed for the retrieval task centered on screenshots. It includes four meta tasks: Screenshot Retrieval (SR), Composed Screenshot Retrieval (CSR), Screenshot QA (SQA), and Open-Vocabulary Classification (OVC). We evaluate three main types of retrievers on MVRB: OCR+Text Retrievers, General Multimodal Retrievers, and Screenshot Document Retrievers. Our proposed UniSE-MLLM achieves state-of-the-art (SOTA) performance on this benchmark.

## License
Vis-IR is licensed under the [MIT License](LICENSE).
## Citation
If you find this model useful, please cite:
```
@article{liu2025any,
title={Any Information Is Just Worth One Single Screenshot: Unifying Search With Visualized Information Retrieval},
author={Liu, Ze and Liang, Zhengyang and Zhou, Junjie and Liu, Zheng and Lian, Defu},
journal={arXiv preprint arXiv:2502.11431},
year={2025}
}
```
|