|
--- |
|
language: en |
|
license: mit |
|
pipeline_tag: text-classification |
|
tags: |
|
- text-classification |
|
- transformers |
|
- pytorch |
|
- onnx |
|
- multi-label-classification |
|
- multi-class-classification |
|
- emotion |
|
- bert |
|
- go_emotions |
|
- emotion-classification |
|
- sentiment-analysis |
|
- tensorflow |
|
datasets: |
|
- google-research-datasets/go_emotions |
|
metrics: |
|
- f1 |
|
- precision |
|
- recall |
|
- accuracy |
|
widget: |
|
- text: I’m just chilling today. |
|
example_title: Neutral Example |
|
- text: Thank you for saving my life! |
|
example_title: Gratitude Example |
|
- text: I’m nervous about my exam tomorrow. |
|
example_title: Nervousness Example |
|
- text: I love my new puppy so much! |
|
example_title: Love Example |
|
- text: I’m so relieved the storm passed. |
|
example_title: Relief Example |
|
base_model: |
|
- google-bert/bert-base-uncased |
|
base_model_relation: finetune |
|
model-index: |
|
- name: Emotion Analyzer Bert |
|
results: |
|
- task: |
|
type: multi-label-classification |
|
dataset: |
|
name: GoEmotions |
|
type: google-research-datasets/go_emotions |
|
metrics: |
|
- name: Micro F1 (Optimized Thresholds) |
|
type: micro-f1 |
|
value: 0.6006 |
|
- name: Macro F1 |
|
type: macro-f1 |
|
value: 0.539 |
|
- name: Precision |
|
type: precision |
|
value: 0.5371 |
|
- name: Recall |
|
type: recall |
|
value: 0.6812 |
|
- name: Hamming Loss |
|
type: hamming-loss |
|
value: 0.0377 |
|
- name: Avg Positive Predictions |
|
type: avg-positive-predictions |
|
value: 1.4789 |
|
- task: |
|
type: multi-label-classification |
|
dataset: |
|
name: GoEmotions |
|
type: google-research-datasets/go_emotions |
|
metrics: |
|
- name: F1 (admiration) |
|
type: f1 |
|
value: 0.6987 |
|
- name: F1 (amusement) |
|
type: f1 |
|
value: 0.8071 |
|
- name: F1 (anger) |
|
type: f1 |
|
value: 0.503 |
|
- name: F1 (annoyance) |
|
type: f1 |
|
value: 0.3892 |
|
- name: F1 (approval) |
|
type: f1 |
|
value: 0.3915 |
|
- name: F1 (caring) |
|
type: f1 |
|
value: 0.4473 |
|
- name: F1 (confusion) |
|
type: f1 |
|
value: 0.4714 |
|
- name: F1 (curiosity) |
|
type: f1 |
|
value: 0.5781 |
|
- name: F1 (desire) |
|
type: f1 |
|
value: 0.5229 |
|
- name: F1 (disappointment) |
|
type: f1 |
|
value: 0.3333 |
|
- name: F1 (disapproval) |
|
type: f1 |
|
value: 0.4323 |
|
- name: F1 (disgust) |
|
type: f1 |
|
value: 0.4926 |
|
- name: F1 (embarrassment) |
|
type: f1 |
|
value: 0.4912 |
|
- name: F1 (excitement) |
|
type: f1 |
|
value: 0.4571 |
|
- name: F1 (fear) |
|
type: f1 |
|
value: 0.586 |
|
- name: F1 (gratitude) |
|
type: f1 |
|
value: 0.9102 |
|
- name: F1 (grief) |
|
type: f1 |
|
value: 0.3333 |
|
- name: F1 (joy) |
|
type: f1 |
|
value: 0.6135 |
|
- name: F1 (love) |
|
type: f1 |
|
value: 0.8065 |
|
- name: F1 (nervousness) |
|
type: f1 |
|
value: 0.4348 |
|
- name: F1 (optimism) |
|
type: f1 |
|
value: 0.5564 |
|
- name: F1 (pride) |
|
type: f1 |
|
value: 0.5217 |
|
- name: F1 (realization) |
|
type: f1 |
|
value: 0.2513 |
|
- name: F1 (relief) |
|
type: f1 |
|
value: 0.5833 |
|
- name: F1 (remorse) |
|
type: f1 |
|
value: 0.68 |
|
- name: F1 (sadness) |
|
type: f1 |
|
value: 0.557 |
|
- name: F1 (surprise) |
|
type: f1 |
|
value: 0.5562 |
|
- name: F1 (neutral) |
|
type: f1 |
|
value: 0.6867 |
|
source: |
|
name: Kaggle Evaluation Notebook |
|
url: >- |
|
https://www.kaggle.com/code/ravindranlogasanjeev/evaluation-logasanjeev-emotions-analyzer-bert/notebook |
|
--- |
|
|
|
# Emotions Analyzer Bert |
|
|
|
Fine-tuned [BERT-base-uncased](https://huggingface.co/bert-base-uncased) on [GoEmotions](https://huggingface.co/datasets/go_emotions) for multi-label classification (28 emotions). This updated version includes improved Macro F1, ONNX support for efficient inference, and visualizations for better interpretability. |
|
|
|
## Model Details |
|
|
|
- **Architecture**: BERT-base-uncased (110M parameters) |
|
- **Training Data**: [GoEmotions](https://huggingface.co/datasets/google-research-datasets/go_emotions) (58k Reddit comments, 28 emotions) |
|
- **Loss Function**: Focal Loss (alpha=1, gamma=2) |
|
- **Optimizer**: AdamW (lr=2e-5, weight_decay=0.01) |
|
- **Epochs**: 5 |
|
- **Batch Size**: 16 |
|
- **Max Length**: 128 |
|
- **Hardware**: Kaggle P100 GPU (16GB) |
|
|
|
## Try It Out |
|
|
|
For accurate predictions with optimized thresholds, use the [Gradio demo](https://logasanjeev-emotions-analyzer-bert-demo.hf.space). The demo now includes preprocessed text and the top 5 predicted emotions, in addition to thresholded predictions. Example predictions: |
|
|
|
- **Input**: "I’m thrilled to win this award! 😄" |
|
- **Output**: `excitement: 0.5836, joy: 0.5290` |
|
- **Input**: "This is so frustrating, nothing works. 😣" |
|
- **Output**: `annoyance: 0.6147, anger: 0.4669` |
|
- **Input**: "I feel so sorry for what happened. 😢" |
|
- **Output**: `sadness: 0.5321, remorse: 0.9107` |
|
|
|
## Performance |
|
|
|
- **Micro F1**: 0.6006 (optimized thresholds) |
|
- **Macro F1**: 0.5390 |
|
- **Precision**: 0.5371 |
|
- **Recall**: 0.6812 |
|
- **Hamming Loss**: 0.0377 |
|
- **Avg Positive Predictions**: 1.4789 |
|
|
|
For a detailed evaluation, including class-wise accuracy, precision, recall, F1, MCC, support, and thresholds, along with visualizations, check out the [Kaggle notebook](https://www.kaggle.com/code/ravindranlogasanjeev/evaluation-logasanjeev-emotions-analyzer-bert/notebook). |
|
|
|
### Class-Wise Performance |
|
|
|
The following table shows per-class metrics on the test set using optimized thresholds (see `optimized_thresholds.json`): |
|
|
|
| Emotion | Accuracy | Precision | Recall | F1 Score | MCC | Support | Threshold | |
|
|---------------|----------|-----------|--------|----------|--------|---------|-----------| |
|
| admiration | 0.9410 | 0.6649 | 0.7361 | 0.6987 | 0.6672 | 504 | 0.4500 | |
|
| amusement | 0.9801 | 0.7635 | 0.8561 | 0.8071 | 0.7981 | 264 | 0.4500 | |
|
| anger | 0.9694 | 0.6176 | 0.4242 | 0.5030 | 0.4970 | 198 | 0.4500 | |
|
| annoyance | 0.9121 | 0.3297 | 0.4750 | 0.3892 | 0.3502 | 320 | 0.3500 | |
|
| approval | 0.8843 | 0.2966 | 0.5755 | 0.3915 | 0.3572 | 351 | 0.3500 | |
|
| caring | 0.9759 | 0.5196 | 0.3926 | 0.4473 | 0.4396 | 135 | 0.4500 | |
|
| confusion | 0.9711 | 0.4861 | 0.4575 | 0.4714 | 0.4567 | 153 | 0.4500 | |
|
| curiosity | 0.9368 | 0.4442 | 0.8275 | 0.5781 | 0.5783 | 284 | 0.4000 | |
|
| desire | 0.9865 | 0.5714 | 0.4819 | 0.5229 | 0.5180 | 83 | 0.4000 | |
|
| disappointment| 0.9565 | 0.2906 | 0.3907 | 0.3333 | 0.3150 | 151 | 0.3500 | |
|
| disapproval | 0.9235 | 0.3405 | 0.5918 | 0.4323 | 0.4118 | 267 | 0.3500 | |
|
| disgust | 0.9810 | 0.6250 | 0.4065 | 0.4926 | 0.4950 | 123 | 0.5500 | |
|
| embarrassment | 0.9947 | 0.7000 | 0.3784 | 0.4912 | 0.5123 | 37 | 0.5000 | |
|
| excitement | 0.9790 | 0.4486 | 0.4660 | 0.4571 | 0.4465 | 103 | 0.4000 | |
|
| fear | 0.9836 | 0.4599 | 0.8077 | 0.5860 | 0.6023 | 78 | 0.3000 | |
|
| gratitude | 0.9888 | 0.9450 | 0.8778 | 0.9102 | 0.9049 | 352 | 0.5500 | |
|
| grief | 0.9985 | 0.3333 | 0.3333 | 0.3333 | 0.3326 | 6 | 0.3000 | |
|
| joy | 0.9768 | 0.6061 | 0.6211 | 0.6135 | 0.6016 | 161 | 0.4500 | |
|
| love | 0.9825 | 0.7826 | 0.8319 | 0.8065 | 0.7978 | 238 | 0.5000 | |
|
| nervousness | 0.9952 | 0.4348 | 0.4348 | 0.4348 | 0.4324 | 23 | 0.4000 | |
|
| optimism | 0.9689 | 0.5436 | 0.5699 | 0.5564 | 0.5405 | 186 | 0.4000 | |
|
| pride | 0.9980 | 0.8571 | 0.3750 | 0.5217 | 0.5662 | 16 | 0.4000 | |
|
| realization | 0.9737 | 0.5217 | 0.1655 | 0.2513 | 0.2838 | 145 | 0.4500 | |
|
| relief | 0.9982 | 0.5385 | 0.6364 | 0.5833 | 0.5845 | 11 | 0.3000 | |
|
| remorse | 0.9912 | 0.5426 | 0.9107 | 0.6800 | 0.6992 | 56 | 0.3500 | |
|
| sadness | 0.9757 | 0.5845 | 0.5321 | 0.5570 | 0.5452 | 156 | 0.4500 | |
|
| surprise | 0.9724 | 0.4772 | 0.6667 | 0.5562 | 0.5504 | 141 | 0.3500 | |
|
| neutral | 0.7485 | 0.5821 | 0.8372 | 0.6867 | 0.5102 | 1787 | 0.4000 | |
|
|
|
### Visualizations |
|
|
|
#### Class-Wise F1 Scores |
|
 |
|
|
|
#### Training Curves |
|
 |
|
|
|
## Training Insights |
|
|
|
The model was trained for 5 epochs with Focal Loss to handle class imbalance. Training and validation curves show consistent improvement: |
|
- Training Loss decreased from 0.0429 to 0.0134. |
|
- Validation Micro F1 peaked at 0.5874 (epoch 5). |
|
- See the training curves plot above for details. |
|
|
|
## Usage |
|
|
|
### Quick Inference with inference.py (Recommended for PyTorch) |
|
|
|
The easiest way to use the model with PyTorch is to programmatically fetch and use `inference.py` from the repository. The script handles all preprocessing, model loading, and inference for you. |
|
|
|
#### Programmatic Download and Inference |
|
Run the following Python script to download `inference.py` and make predictions: |
|
|
|
```python |
|
!pip install transformers torch huggingface_hub emoji -q |
|
|
|
import shutil |
|
import os |
|
from huggingface_hub import hf_hub_download |
|
from importlib import import_module |
|
|
|
repo_id = "logasanjeev/emotions-analyzer-bert" |
|
local_file = hf_hub_download(repo_id=repo_id, filename="inference.py") |
|
|
|
current_dir = os.getcwd() |
|
destination = os.path.join(current_dir, "inference.py") |
|
shutil.copy(local_file, destination) |
|
|
|
inference_module = import_module("inference") |
|
predict_emotions = inference_module.predict_emotions |
|
|
|
text = "I’m thrilled to win this award! 😄" |
|
result, processed = predict_emotions(text) |
|
print(f"Input: {text}") |
|
print(f"Processed: {processed}") |
|
print("Predicted Emotions:") |
|
print(result) |
|
``` |
|
|
|
#### Expected Output: |
|
``` |
|
Input: I’m thrilled to win this award! 😄 |
|
Processed: i’m thrilled to win this award ! grinning_face_with_smiling_eyes |
|
Predicted Emotions: |
|
excitement: 0.5836 |
|
joy: 0.5290 |
|
``` |
|
|
|
#### Alternative: Manual Download |
|
If you prefer to download `inference.py` manually: |
|
1. Install the required dependencies: |
|
```bash |
|
pip install transformers torch huggingface_hub emoji |
|
``` |
|
2. Download `inference.py` from the repository. |
|
3. Use it in Python or via the command line. |
|
|
|
**Python Example:** |
|
```python |
|
from inference import predict_emotions |
|
|
|
result, processed = predict_emotions("I’m thrilled to win this award! 😄") |
|
print(f"Input: I’m thrilled to win this award! 😄") |
|
print(f"Processed: {processed}") |
|
print("Predicted Emotions:") |
|
print(result) |
|
``` |
|
|
|
**Command-Line Example:** |
|
```bash |
|
python inference.py "I’m thrilled to win this award! 😄" |
|
``` |
|
|
|
### Quick Inference with onnx_inference.py (Recommended for ONNX) |
|
|
|
For faster and more efficient inference using ONNX, you can use `onnx_inference.py`. This script leverages ONNX Runtime for inference, which is typically more lightweight than PyTorch. |
|
|
|
#### Programmatic Download and Inference |
|
Run the following Python script to download `onnx_inference.py` and make predictions: |
|
|
|
```python |
|
!pip install transformers onnxruntime huggingface_hub emoji numpy -q |
|
|
|
import shutil |
|
import os |
|
from huggingface_hub import hf_hub_download |
|
from importlib import import_module |
|
|
|
repo_id = "logasanjeev/emotions-analyzer-bert" |
|
local_file = hf_hub_download(repo_id=repo_id, filename="onnx_inference.py") |
|
|
|
current_dir = os.getcwd() |
|
destination = os.path.join(current_dir, "onnx_inference.py") |
|
shutil.copy(local_file, destination) |
|
|
|
onnx_inference_module = import_module("onnx_inference") |
|
predict_emotions = onnx_inference_module.predict_emotions |
|
|
|
text = "I’m thrilled to win this award! 😄" |
|
result, processed = predict_emotions(text) |
|
print(f"Input: {text}") |
|
print(f"Processed: {processed}") |
|
print("Predicted Emotions:") |
|
print(result) |
|
``` |
|
|
|
#### Expected Output: |
|
``` |
|
Input: I’m thrilled to win this award! 😄 |
|
Processed: i’m thrilled to win this award ! grinning_face_with_smiling_eyes |
|
Predicted Emotions: |
|
excitement: 0.5836 |
|
joy: 0.5290 |
|
``` |
|
|
|
#### Alternative: Manual Download |
|
If you prefer to download `onnx_inference.py` manually: |
|
1. Install the required dependencies: |
|
```bash |
|
pip install transformers onnxruntime huggingface_hub emoji numpy |
|
``` |
|
2. Download `onnx_inference.py` from the repository. |
|
3. Use it in Python or via the command line. |
|
|
|
**Python Example:** |
|
```python |
|
from onnx_inference import predict_emotions |
|
|
|
result, processed = predict_emotions("I’m thrilled to win this award! 😄") |
|
print(f"Input: I’m thrilled to win this award! 😄") |
|
print(f"Processed: {processed}") |
|
print("Predicted Emotions:") |
|
print(result) |
|
``` |
|
|
|
**Command-Line Example:** |
|
```bash |
|
python onnx_inference.py "I’m thrilled to win this award! 😄" |
|
``` |
|
|
|
### Preprocessing |
|
Before inference, preprocess text to match training conditions: |
|
- Replace user mentions (`u/username`) with `[USER]`. |
|
- Replace subreddits (`r/subreddit`) with `[SUBREDDIT]`. |
|
- Replace URLs with `[URL]`. |
|
- Convert emojis to text using `emoji.demojize` (e.g., 😊 → `smiling_face_with_smiling_eyes`). |
|
- Lowercase the text. |
|
|
|
### PyTorch Inference |
|
```python |
|
from transformers import BertForSequenceClassification, BertTokenizer |
|
import torch |
|
import json |
|
import requests |
|
import re |
|
import emoji |
|
|
|
def preprocess_text(text): |
|
text = re.sub(r'u/\w+', '[USER]', text) |
|
text = re.sub(r'r/\w+', '[SUBREDDIT]', text) |
|
text = re.sub(r'http[s]?://\S+', '[URL]', text) |
|
text = emoji.demojize(text, delimiters=(" ", " ")) |
|
text = text.lower() |
|
return text |
|
|
|
repo_id = "logasanjeev/emotions-analyzer-bert" |
|
model = BertForSequenceClassification.from_pretrained(repo_id) |
|
tokenizer = BertTokenizer.from_pretrained(repo_id) |
|
|
|
thresholds_url = f"https://huggingface.co/{repo_id}/raw/main/optimized_thresholds.json" |
|
thresholds_data = json.loads(requests.get(thresholds_url).text) |
|
emotion_labels = thresholds_data["emotion_labels"] |
|
thresholds = thresholds_data["thresholds"] |
|
|
|
text = "I’m just chilling today." |
|
processed_text = preprocess_text(text) |
|
encodings = tokenizer(processed_text, padding='max_length', truncation=True, max_length=128, return_tensors='pt') |
|
with torch.no_grad(): |
|
logits = torch.sigmoid(model(**encodings).logits).numpy()[0] |
|
predictions = [(emotion_labels[i], round(logit, 4)) for i, (logit, thresh) in enumerate(zip(logits, thresholds)) if logit >= thresh] |
|
predictions = sorted(predictions, key=lambda x: x[1], reverse=True) |
|
print(predictions) |
|
# Output: [('neutral', 0.8147)] |
|
``` |
|
|
|
### ONNX Inference |
|
For a simplified ONNX inference experience, use `onnx_inference.py` as shown above. Alternatively, you can use the manual approach below: |
|
|
|
```python |
|
import onnxruntime as ort |
|
import numpy as np |
|
|
|
onnx_url = f"https://huggingface.co/{repo_id}/raw/main/model.onnx" |
|
with open("model.onnx", "wb") as f: |
|
f.write(requests.get(onnx_url).content) |
|
|
|
text = "I’m thrilled to win this award! 😄" |
|
processed_text = preprocess_text(text) |
|
encodings = tokenizer(processed_text, padding='max_length', truncation=True, max_length=128, return_tensors='np') |
|
session = ort.InferenceSession("model.onnx") |
|
inputs = { |
|
'input_ids': encodings['input_ids'].astype(np.int64), |
|
'attention_mask': encodings['attention_mask'].astype(np.int64) |
|
} |
|
logits = session.run(None, inputs)[0][0] |
|
logits = 1 / (1 + np.exp(-logits)) # Sigmoid |
|
predictions = [(emotion_labels[i], round(logit, 4)) for i, (logit, thresh) in enumerate(zip(logits, thresholds)) if logit >= thresh] |
|
predictions = sorted(predictions, key=lambda x: x[1], reverse=True) |
|
print(predictions) |
|
# Output: [('excitement', 0.5836), ('joy', 0.5290)] |
|
``` |
|
|
|
## License |
|
|
|
This model is licensed under the MIT License. See [LICENSE](LICENSE) for details. |
|
|
|
## Usage Notes |
|
|
|
- The model performs best on Reddit-style comments with similar preprocessing. |
|
- Rare emotions (e.g., `grief`, support=6) have lower F1 scores due to limited data. |
|
- ONNX inference requires `onnxruntime` and compatible hardware (opset 14). |
|
|
|
## Inference Providers |
|
|
|
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support |