File size: 16,040 Bytes
65303d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be60d27
afd4a7c
65303d3
 
 
 
 
 
be60d27
65303d3
 
 
 
 
 
 
 
 
 
 
 
 
475a142
65303d3
56080a3
be60d27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34eaa53
65303d3
 
707f7c5
65303d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34eaa53
65303d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01600ea
65303d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34eaa53
65303d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34eaa53
65303d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34eaa53
65303d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caa0a26
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
---
language: en
license: mit
pipeline_tag: text-classification
tags:
- text-classification
- transformers
- pytorch
- onnx
- multi-label-classification
- multi-class-classification
- emotion
- bert
- go_emotions
- emotion-classification
- sentiment-analysis
- tensorflow
datasets:
- google-research-datasets/go_emotions
metrics:
- f1
- precision
- recall
- accuracy
widget:
- text: I’m just chilling today.
  example_title: Neutral Example
- text: Thank you for saving my life!
  example_title: Gratitude Example
- text: I’m nervous about my exam tomorrow.
  example_title: Nervousness Example
- text: I love my new puppy so much!
  example_title: Love Example
- text: I’m so relieved the storm passed.
  example_title: Relief Example
base_model:
- google-bert/bert-base-uncased
base_model_relation: finetune
model-index:
- name: Emotion Analyzer Bert
  results:
  - task:
      type: multi-label-classification
    dataset:
      name: GoEmotions
      type: google-research-datasets/go_emotions
    metrics:
    - name: Micro F1 (Optimized Thresholds)
      type: micro-f1
      value: 0.6006
    - name: Macro F1
      type: macro-f1
      value: 0.539
    - name: Precision
      type: precision
      value: 0.5371
    - name: Recall
      type: recall
      value: 0.6812
    - name: Hamming Loss
      type: hamming-loss
      value: 0.0377
    - name: Avg Positive Predictions
      type: avg-positive-predictions
      value: 1.4789
  - task:
      type: multi-label-classification
    dataset:
      name: GoEmotions
      type: google-research-datasets/go_emotions
    metrics:
    - name: F1 (admiration)
      type: f1
      value: 0.6987
    - name: F1 (amusement)
      type: f1
      value: 0.8071
    - name: F1 (anger)
      type: f1
      value: 0.503
    - name: F1 (annoyance)
      type: f1
      value: 0.3892
    - name: F1 (approval)
      type: f1
      value: 0.3915
    - name: F1 (caring)
      type: f1
      value: 0.4473
    - name: F1 (confusion)
      type: f1
      value: 0.4714
    - name: F1 (curiosity)
      type: f1
      value: 0.5781
    - name: F1 (desire)
      type: f1
      value: 0.5229
    - name: F1 (disappointment)
      type: f1
      value: 0.3333
    - name: F1 (disapproval)
      type: f1
      value: 0.4323
    - name: F1 (disgust)
      type: f1
      value: 0.4926
    - name: F1 (embarrassment)
      type: f1
      value: 0.4912
    - name: F1 (excitement)
      type: f1
      value: 0.4571
    - name: F1 (fear)
      type: f1
      value: 0.586
    - name: F1 (gratitude)
      type: f1
      value: 0.9102
    - name: F1 (grief)
      type: f1
      value: 0.3333
    - name: F1 (joy)
      type: f1
      value: 0.6135
    - name: F1 (love)
      type: f1
      value: 0.8065
    - name: F1 (nervousness)
      type: f1
      value: 0.4348
    - name: F1 (optimism)
      type: f1
      value: 0.5564
    - name: F1 (pride)
      type: f1
      value: 0.5217
    - name: F1 (realization)
      type: f1
      value: 0.2513
    - name: F1 (relief)
      type: f1
      value: 0.5833
    - name: F1 (remorse)
      type: f1
      value: 0.68
    - name: F1 (sadness)
      type: f1
      value: 0.557
    - name: F1 (surprise)
      type: f1
      value: 0.5562
    - name: F1 (neutral)
      type: f1
      value: 0.6867
    source:
      name: Kaggle Evaluation Notebook
      url: >-
        https://www.kaggle.com/code/ravindranlogasanjeev/evaluation-logasanjeev-emotions-analyzer-bert/notebook
---

# Emotions Analyzer Bert

Fine-tuned [BERT-base-uncased](https://huggingface.co/bert-base-uncased) on [GoEmotions](https://huggingface.co/datasets/go_emotions) for multi-label classification (28 emotions). This updated version includes improved Macro F1, ONNX support for efficient inference, and visualizations for better interpretability.

## Model Details

- **Architecture**: BERT-base-uncased (110M parameters)
- **Training Data**: [GoEmotions](https://huggingface.co/datasets/google-research-datasets/go_emotions) (58k Reddit comments, 28 emotions)
- **Loss Function**: Focal Loss (alpha=1, gamma=2)
- **Optimizer**: AdamW (lr=2e-5, weight_decay=0.01)
- **Epochs**: 5
- **Batch Size**: 16
- **Max Length**: 128
- **Hardware**: Kaggle P100 GPU (16GB)

## Try It Out

For accurate predictions with optimized thresholds, use the [Gradio demo](https://logasanjeev-emotions-analyzer-bert-demo.hf.space). The demo now includes preprocessed text and the top 5 predicted emotions, in addition to thresholded predictions. Example predictions:

- **Input**: "I’m thrilled to win this award! 😄"
  - **Output**: `excitement: 0.5836, joy: 0.5290`
- **Input**: "This is so frustrating, nothing works. 😣"
  - **Output**: `annoyance: 0.6147, anger: 0.4669`
- **Input**: "I feel so sorry for what happened. 😢"
  - **Output**: `sadness: 0.5321, remorse: 0.9107`

## Performance

- **Micro F1**: 0.6006 (optimized thresholds)
- **Macro F1**: 0.5390
- **Precision**: 0.5371
- **Recall**: 0.6812
- **Hamming Loss**: 0.0377
- **Avg Positive Predictions**: 1.4789

For a detailed evaluation, including class-wise accuracy, precision, recall, F1, MCC, support, and thresholds, along with visualizations, check out the [Kaggle notebook](https://www.kaggle.com/code/ravindranlogasanjeev/evaluation-logasanjeev-emotions-analyzer-bert/notebook).

### Class-Wise Performance

The following table shows per-class metrics on the test set using optimized thresholds (see `optimized_thresholds.json`):

| Emotion        | Accuracy | Precision | Recall | F1 Score | MCC    | Support | Threshold |
|---------------|----------|-----------|--------|----------|--------|---------|-----------|
| admiration    | 0.9410   | 0.6649    | 0.7361 | 0.6987   | 0.6672 | 504     | 0.4500    |
| amusement     | 0.9801   | 0.7635    | 0.8561 | 0.8071   | 0.7981 | 264     | 0.4500    |
| anger         | 0.9694   | 0.6176    | 0.4242 | 0.5030   | 0.4970 | 198     | 0.4500    |
| annoyance     | 0.9121   | 0.3297    | 0.4750 | 0.3892   | 0.3502 | 320     | 0.3500    |
| approval      | 0.8843   | 0.2966    | 0.5755 | 0.3915   | 0.3572 | 351     | 0.3500    |
| caring        | 0.9759   | 0.5196    | 0.3926 | 0.4473   | 0.4396 | 135     | 0.4500    |
| confusion     | 0.9711   | 0.4861    | 0.4575 | 0.4714   | 0.4567 | 153     | 0.4500    |
| curiosity     | 0.9368   | 0.4442    | 0.8275 | 0.5781   | 0.5783 | 284     | 0.4000    |
| desire        | 0.9865   | 0.5714    | 0.4819 | 0.5229   | 0.5180 | 83      | 0.4000    |
| disappointment| 0.9565   | 0.2906    | 0.3907 | 0.3333   | 0.3150 | 151     | 0.3500    |
| disapproval   | 0.9235   | 0.3405    | 0.5918 | 0.4323   | 0.4118 | 267     | 0.3500    |
| disgust       | 0.9810   | 0.6250    | 0.4065 | 0.4926   | 0.4950 | 123     | 0.5500    |
| embarrassment | 0.9947   | 0.7000    | 0.3784 | 0.4912   | 0.5123 | 37      | 0.5000    |
| excitement    | 0.9790   | 0.4486    | 0.4660 | 0.4571   | 0.4465 | 103     | 0.4000    |
| fear          | 0.9836   | 0.4599    | 0.8077 | 0.5860   | 0.6023 | 78      | 0.3000    |
| gratitude     | 0.9888   | 0.9450    | 0.8778 | 0.9102   | 0.9049 | 352     | 0.5500    |
| grief         | 0.9985   | 0.3333    | 0.3333 | 0.3333   | 0.3326 | 6       | 0.3000    |
| joy           | 0.9768   | 0.6061    | 0.6211 | 0.6135   | 0.6016 | 161     | 0.4500    |
| love          | 0.9825   | 0.7826    | 0.8319 | 0.8065   | 0.7978 | 238     | 0.5000    |
| nervousness   | 0.9952   | 0.4348    | 0.4348 | 0.4348   | 0.4324 | 23      | 0.4000    |
| optimism      | 0.9689   | 0.5436    | 0.5699 | 0.5564   | 0.5405 | 186     | 0.4000    |
| pride         | 0.9980   | 0.8571    | 0.3750 | 0.5217   | 0.5662 | 16      | 0.4000    |
| realization   | 0.9737   | 0.5217    | 0.1655 | 0.2513   | 0.2838 | 145     | 0.4500    |
| relief        | 0.9982   | 0.5385    | 0.6364 | 0.5833   | 0.5845 | 11      | 0.3000    |
| remorse       | 0.9912   | 0.5426    | 0.9107 | 0.6800   | 0.6992 | 56      | 0.3500    |
| sadness       | 0.9757   | 0.5845    | 0.5321 | 0.5570   | 0.5452 | 156     | 0.4500    |
| surprise      | 0.9724   | 0.4772    | 0.6667 | 0.5562   | 0.5504 | 141     | 0.3500    |
| neutral       | 0.7485   | 0.5821    | 0.8372 | 0.6867   | 0.5102 | 1787    | 0.4000    |

### Visualizations

#### Class-Wise F1 Scores
![Class-Wise F1 Scores](class_wise_f1_plot.png)

#### Training Curves
![Training and Validation Loss and Micro F1](training_curves_plot.png)

## Training Insights

The model was trained for 5 epochs with Focal Loss to handle class imbalance. Training and validation curves show consistent improvement:
- Training Loss decreased from 0.0429 to 0.0134.
- Validation Micro F1 peaked at 0.5874 (epoch 5).
- See the training curves plot above for details.

## Usage

### Quick Inference with inference.py (Recommended for PyTorch)

The easiest way to use the model with PyTorch is to programmatically fetch and use `inference.py` from the repository. The script handles all preprocessing, model loading, and inference for you.

#### Programmatic Download and Inference
Run the following Python script to download `inference.py` and make predictions:

```python
!pip install transformers torch huggingface_hub emoji -q

import shutil
import os
from huggingface_hub import hf_hub_download
from importlib import import_module

repo_id = "logasanjeev/emotions-analyzer-bert"
local_file = hf_hub_download(repo_id=repo_id, filename="inference.py")

current_dir = os.getcwd()
destination = os.path.join(current_dir, "inference.py")
shutil.copy(local_file, destination)

inference_module = import_module("inference")
predict_emotions = inference_module.predict_emotions

text = "I’m thrilled to win this award! 😄"
result, processed = predict_emotions(text)
print(f"Input: {text}")
print(f"Processed: {processed}")
print("Predicted Emotions:")
print(result)
```

#### Expected Output:
```
Input: I’m thrilled to win this award! 😄
Processed: i’m thrilled to win this award ! grinning_face_with_smiling_eyes
Predicted Emotions:
excitement: 0.5836
joy: 0.5290
```

#### Alternative: Manual Download
If you prefer to download `inference.py` manually:
1. Install the required dependencies:
   ```bash
   pip install transformers torch huggingface_hub emoji
   ```
2. Download `inference.py` from the repository.
3. Use it in Python or via the command line.

**Python Example:**
```python
from inference import predict_emotions

result, processed = predict_emotions("I’m thrilled to win this award! 😄")
print(f"Input: I’m thrilled to win this award! 😄")
print(f"Processed: {processed}")
print("Predicted Emotions:")
print(result)
```

**Command-Line Example:**
```bash
python inference.py "I’m thrilled to win this award! 😄"
```

### Quick Inference with onnx_inference.py (Recommended for ONNX)

For faster and more efficient inference using ONNX, you can use `onnx_inference.py`. This script leverages ONNX Runtime for inference, which is typically more lightweight than PyTorch.

#### Programmatic Download and Inference
Run the following Python script to download `onnx_inference.py` and make predictions:

```python
!pip install transformers onnxruntime huggingface_hub emoji numpy -q

import shutil
import os
from huggingface_hub import hf_hub_download
from importlib import import_module

repo_id = "logasanjeev/emotions-analyzer-bert"
local_file = hf_hub_download(repo_id=repo_id, filename="onnx_inference.py")

current_dir = os.getcwd()
destination = os.path.join(current_dir, "onnx_inference.py")
shutil.copy(local_file, destination)

onnx_inference_module = import_module("onnx_inference")
predict_emotions = onnx_inference_module.predict_emotions

text = "I’m thrilled to win this award! 😄"
result, processed = predict_emotions(text)
print(f"Input: {text}")
print(f"Processed: {processed}")
print("Predicted Emotions:")
print(result)
```

#### Expected Output:
```
Input: I’m thrilled to win this award! 😄
Processed: i’m thrilled to win this award ! grinning_face_with_smiling_eyes
Predicted Emotions:
excitement: 0.5836
joy: 0.5290
```

#### Alternative: Manual Download
If you prefer to download `onnx_inference.py` manually:
1. Install the required dependencies:
   ```bash
   pip install transformers onnxruntime huggingface_hub emoji numpy
   ```
2. Download `onnx_inference.py` from the repository.
3. Use it in Python or via the command line.

**Python Example:**
```python
from onnx_inference import predict_emotions

result, processed = predict_emotions("I’m thrilled to win this award! 😄")
print(f"Input: I’m thrilled to win this award! 😄")
print(f"Processed: {processed}")
print("Predicted Emotions:")
print(result)
```

**Command-Line Example:**
```bash
python onnx_inference.py "I’m thrilled to win this award! 😄"
```

### Preprocessing
Before inference, preprocess text to match training conditions:
- Replace user mentions (`u/username`) with `[USER]`.
- Replace subreddits (`r/subreddit`) with `[SUBREDDIT]`.
- Replace URLs with `[URL]`.
- Convert emojis to text using `emoji.demojize` (e.g., 😊 → `smiling_face_with_smiling_eyes`).
- Lowercase the text.

### PyTorch Inference
```python
from transformers import BertForSequenceClassification, BertTokenizer
import torch
import json
import requests
import re
import emoji

def preprocess_text(text):
    text = re.sub(r'u/\w+', '[USER]', text)
    text = re.sub(r'r/\w+', '[SUBREDDIT]', text)
    text = re.sub(r'http[s]?://\S+', '[URL]', text)
    text = emoji.demojize(text, delimiters=(" ", " "))
    text = text.lower()
    return text

repo_id = "logasanjeev/emotions-analyzer-bert"
model = BertForSequenceClassification.from_pretrained(repo_id)
tokenizer = BertTokenizer.from_pretrained(repo_id)

thresholds_url = f"https://huggingface.co/{repo_id}/raw/main/optimized_thresholds.json"
thresholds_data = json.loads(requests.get(thresholds_url).text)
emotion_labels = thresholds_data["emotion_labels"]
thresholds = thresholds_data["thresholds"]

text = "I’m just chilling today."
processed_text = preprocess_text(text)
encodings = tokenizer(processed_text, padding='max_length', truncation=True, max_length=128, return_tensors='pt')
with torch.no_grad():
    logits = torch.sigmoid(model(**encodings).logits).numpy()[0]
predictions = [(emotion_labels[i], round(logit, 4)) for i, (logit, thresh) in enumerate(zip(logits, thresholds)) if logit >= thresh]
predictions = sorted(predictions, key=lambda x: x[1], reverse=True)
print(predictions)
# Output: [('neutral', 0.8147)]
```

### ONNX Inference
For a simplified ONNX inference experience, use `onnx_inference.py` as shown above. Alternatively, you can use the manual approach below:

```python
import onnxruntime as ort
import numpy as np

onnx_url = f"https://huggingface.co/{repo_id}/raw/main/model.onnx"
with open("model.onnx", "wb") as f:
    f.write(requests.get(onnx_url).content)

text = "I’m thrilled to win this award! 😄"
processed_text = preprocess_text(text)
encodings = tokenizer(processed_text, padding='max_length', truncation=True, max_length=128, return_tensors='np')
session = ort.InferenceSession("model.onnx")
inputs = {
    'input_ids': encodings['input_ids'].astype(np.int64),
    'attention_mask': encodings['attention_mask'].astype(np.int64)
}
logits = session.run(None, inputs)[0][0]
logits = 1 / (1 + np.exp(-logits))  # Sigmoid
predictions = [(emotion_labels[i], round(logit, 4)) for i, (logit, thresh) in enumerate(zip(logits, thresholds)) if logit >= thresh]
predictions = sorted(predictions, key=lambda x: x[1], reverse=True)
print(predictions)
# Output: [('excitement', 0.5836), ('joy', 0.5290)]
```

## License

This model is licensed under the MIT License. See [LICENSE](LICENSE) for details.

## Usage Notes

- The model performs best on Reddit-style comments with similar preprocessing.
- Rare emotions (e.g., `grief`, support=6) have lower F1 scores due to limited data.
- ONNX inference requires `onnxruntime` and compatible hardware (opset 14).

## Inference Providers

This model isn't deployed by any Inference Provider. 🙋 Ask for provider support