gte-large-zh-GGUF / README.md
linlueird's picture
Upload README.md with huggingface_hub
723fe5c verified
|
raw
history blame
26.7 kB
---
tags:
- mteb
- sentence-similarity
- sentence-transformers
- Sentence Transformers
- llama-cpp
- gguf-my-repo
language:
- en
license: mit
base_model: thenlper/gte-large-zh
model-index:
- name: gte-large-zh
results:
- task:
type: STS
dataset:
name: MTEB AFQMC
type: C-MTEB/AFQMC
config: default
split: validation
revision: None
metrics:
- type: cos_sim_pearson
value: 48.94131905219026
- type: cos_sim_spearman
value: 54.58261199731436
- type: euclidean_pearson
value: 52.73929210805982
- type: euclidean_spearman
value: 54.582632097533676
- type: manhattan_pearson
value: 52.73123295724949
- type: manhattan_spearman
value: 54.572941830465794
- task:
type: STS
dataset:
name: MTEB ATEC
type: C-MTEB/ATEC
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 47.292931669579005
- type: cos_sim_spearman
value: 54.601019783506466
- type: euclidean_pearson
value: 54.61393532658173
- type: euclidean_spearman
value: 54.60101865708542
- type: manhattan_pearson
value: 54.59369555606305
- type: manhattan_spearman
value: 54.601098593646036
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (zh)
type: mteb/amazon_reviews_multi
config: zh
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 47.233999999999995
- type: f1
value: 45.68998446563349
- task:
type: STS
dataset:
name: MTEB BQ
type: C-MTEB/BQ
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 62.55033151404683
- type: cos_sim_spearman
value: 64.40573802644984
- type: euclidean_pearson
value: 62.93453281081951
- type: euclidean_spearman
value: 64.40574149035828
- type: manhattan_pearson
value: 62.839969210895816
- type: manhattan_spearman
value: 64.30837945045283
- task:
type: Clustering
dataset:
name: MTEB CLSClusteringP2P
type: C-MTEB/CLSClusteringP2P
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 42.098169316685045
- task:
type: Clustering
dataset:
name: MTEB CLSClusteringS2S
type: C-MTEB/CLSClusteringS2S
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 38.90716707051822
- task:
type: Reranking
dataset:
name: MTEB CMedQAv1
type: C-MTEB/CMedQAv1-reranking
config: default
split: test
revision: None
metrics:
- type: map
value: 86.09191911031553
- type: mrr
value: 88.6747619047619
- task:
type: Reranking
dataset:
name: MTEB CMedQAv2
type: C-MTEB/CMedQAv2-reranking
config: default
split: test
revision: None
metrics:
- type: map
value: 86.45781885502122
- type: mrr
value: 89.01591269841269
- task:
type: Retrieval
dataset:
name: MTEB CmedqaRetrieval
type: C-MTEB/CmedqaRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 24.215
- type: map_at_10
value: 36.498000000000005
- type: map_at_100
value: 38.409
- type: map_at_1000
value: 38.524
- type: map_at_3
value: 32.428000000000004
- type: map_at_5
value: 34.664
- type: mrr_at_1
value: 36.834
- type: mrr_at_10
value: 45.196
- type: mrr_at_100
value: 46.214
- type: mrr_at_1000
value: 46.259
- type: mrr_at_3
value: 42.631
- type: mrr_at_5
value: 44.044
- type: ndcg_at_1
value: 36.834
- type: ndcg_at_10
value: 43.146
- type: ndcg_at_100
value: 50.632999999999996
- type: ndcg_at_1000
value: 52.608999999999995
- type: ndcg_at_3
value: 37.851
- type: ndcg_at_5
value: 40.005
- type: precision_at_1
value: 36.834
- type: precision_at_10
value: 9.647
- type: precision_at_100
value: 1.574
- type: precision_at_1000
value: 0.183
- type: precision_at_3
value: 21.48
- type: precision_at_5
value: 15.649
- type: recall_at_1
value: 24.215
- type: recall_at_10
value: 54.079
- type: recall_at_100
value: 84.943
- type: recall_at_1000
value: 98.098
- type: recall_at_3
value: 38.117000000000004
- type: recall_at_5
value: 44.775999999999996
- task:
type: PairClassification
dataset:
name: MTEB Cmnli
type: C-MTEB/CMNLI
config: default
split: validation
revision: None
metrics:
- type: cos_sim_accuracy
value: 82.51352976548407
- type: cos_sim_ap
value: 89.49905141462749
- type: cos_sim_f1
value: 83.89334489486234
- type: cos_sim_precision
value: 78.19761567993534
- type: cos_sim_recall
value: 90.48398410100538
- type: dot_accuracy
value: 82.51352976548407
- type: dot_ap
value: 89.49108293121158
- type: dot_f1
value: 83.89334489486234
- type: dot_precision
value: 78.19761567993534
- type: dot_recall
value: 90.48398410100538
- type: euclidean_accuracy
value: 82.51352976548407
- type: euclidean_ap
value: 89.49904709975154
- type: euclidean_f1
value: 83.89334489486234
- type: euclidean_precision
value: 78.19761567993534
- type: euclidean_recall
value: 90.48398410100538
- type: manhattan_accuracy
value: 82.48947684906794
- type: manhattan_ap
value: 89.49231995962901
- type: manhattan_f1
value: 83.84681215233205
- type: manhattan_precision
value: 77.28258726089528
- type: manhattan_recall
value: 91.62964694879588
- type: max_accuracy
value: 82.51352976548407
- type: max_ap
value: 89.49905141462749
- type: max_f1
value: 83.89334489486234
- task:
type: Retrieval
dataset:
name: MTEB CovidRetrieval
type: C-MTEB/CovidRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 78.583
- type: map_at_10
value: 85.613
- type: map_at_100
value: 85.777
- type: map_at_1000
value: 85.77900000000001
- type: map_at_3
value: 84.58
- type: map_at_5
value: 85.22800000000001
- type: mrr_at_1
value: 78.925
- type: mrr_at_10
value: 85.667
- type: mrr_at_100
value: 85.822
- type: mrr_at_1000
value: 85.824
- type: mrr_at_3
value: 84.651
- type: mrr_at_5
value: 85.299
- type: ndcg_at_1
value: 78.925
- type: ndcg_at_10
value: 88.405
- type: ndcg_at_100
value: 89.02799999999999
- type: ndcg_at_1000
value: 89.093
- type: ndcg_at_3
value: 86.393
- type: ndcg_at_5
value: 87.5
- type: precision_at_1
value: 78.925
- type: precision_at_10
value: 9.789
- type: precision_at_100
value: 1.005
- type: precision_at_1000
value: 0.101
- type: precision_at_3
value: 30.769000000000002
- type: precision_at_5
value: 19.031000000000002
- type: recall_at_1
value: 78.583
- type: recall_at_10
value: 96.891
- type: recall_at_100
value: 99.473
- type: recall_at_1000
value: 100.0
- type: recall_at_3
value: 91.438
- type: recall_at_5
value: 94.152
- task:
type: Retrieval
dataset:
name: MTEB DuRetrieval
type: C-MTEB/DuRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 25.604
- type: map_at_10
value: 77.171
- type: map_at_100
value: 80.033
- type: map_at_1000
value: 80.099
- type: map_at_3
value: 54.364000000000004
- type: map_at_5
value: 68.024
- type: mrr_at_1
value: 89.85
- type: mrr_at_10
value: 93.009
- type: mrr_at_100
value: 93.065
- type: mrr_at_1000
value: 93.068
- type: mrr_at_3
value: 92.72500000000001
- type: mrr_at_5
value: 92.915
- type: ndcg_at_1
value: 89.85
- type: ndcg_at_10
value: 85.038
- type: ndcg_at_100
value: 88.247
- type: ndcg_at_1000
value: 88.837
- type: ndcg_at_3
value: 85.20299999999999
- type: ndcg_at_5
value: 83.47
- type: precision_at_1
value: 89.85
- type: precision_at_10
value: 40.275
- type: precision_at_100
value: 4.709
- type: precision_at_1000
value: 0.486
- type: precision_at_3
value: 76.36699999999999
- type: precision_at_5
value: 63.75999999999999
- type: recall_at_1
value: 25.604
- type: recall_at_10
value: 85.423
- type: recall_at_100
value: 95.695
- type: recall_at_1000
value: 98.669
- type: recall_at_3
value: 56.737
- type: recall_at_5
value: 72.646
- task:
type: Retrieval
dataset:
name: MTEB EcomRetrieval
type: C-MTEB/EcomRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 51.800000000000004
- type: map_at_10
value: 62.17
- type: map_at_100
value: 62.649
- type: map_at_1000
value: 62.663000000000004
- type: map_at_3
value: 59.699999999999996
- type: map_at_5
value: 61.23499999999999
- type: mrr_at_1
value: 51.800000000000004
- type: mrr_at_10
value: 62.17
- type: mrr_at_100
value: 62.649
- type: mrr_at_1000
value: 62.663000000000004
- type: mrr_at_3
value: 59.699999999999996
- type: mrr_at_5
value: 61.23499999999999
- type: ndcg_at_1
value: 51.800000000000004
- type: ndcg_at_10
value: 67.246
- type: ndcg_at_100
value: 69.58
- type: ndcg_at_1000
value: 69.925
- type: ndcg_at_3
value: 62.197
- type: ndcg_at_5
value: 64.981
- type: precision_at_1
value: 51.800000000000004
- type: precision_at_10
value: 8.32
- type: precision_at_100
value: 0.941
- type: precision_at_1000
value: 0.097
- type: precision_at_3
value: 23.133
- type: precision_at_5
value: 15.24
- type: recall_at_1
value: 51.800000000000004
- type: recall_at_10
value: 83.2
- type: recall_at_100
value: 94.1
- type: recall_at_1000
value: 96.8
- type: recall_at_3
value: 69.39999999999999
- type: recall_at_5
value: 76.2
- task:
type: Classification
dataset:
name: MTEB IFlyTek
type: C-MTEB/IFlyTek-classification
config: default
split: validation
revision: None
metrics:
- type: accuracy
value: 49.60369372835706
- type: f1
value: 38.24016248875209
- task:
type: Classification
dataset:
name: MTEB JDReview
type: C-MTEB/JDReview-classification
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 86.71669793621012
- type: ap
value: 55.75807094995178
- type: f1
value: 81.59033162805417
- task:
type: STS
dataset:
name: MTEB LCQMC
type: C-MTEB/LCQMC
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 69.50947272908907
- type: cos_sim_spearman
value: 74.40054474949213
- type: euclidean_pearson
value: 73.53007373987617
- type: euclidean_spearman
value: 74.40054474732082
- type: manhattan_pearson
value: 73.51396571849736
- type: manhattan_spearman
value: 74.38395696630835
- task:
type: Reranking
dataset:
name: MTEB MMarcoReranking
type: C-MTEB/Mmarco-reranking
config: default
split: dev
revision: None
metrics:
- type: map
value: 31.188333827724108
- type: mrr
value: 29.84801587301587
- task:
type: Retrieval
dataset:
name: MTEB MMarcoRetrieval
type: C-MTEB/MMarcoRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 64.685
- type: map_at_10
value: 73.803
- type: map_at_100
value: 74.153
- type: map_at_1000
value: 74.167
- type: map_at_3
value: 71.98
- type: map_at_5
value: 73.21600000000001
- type: mrr_at_1
value: 66.891
- type: mrr_at_10
value: 74.48700000000001
- type: mrr_at_100
value: 74.788
- type: mrr_at_1000
value: 74.801
- type: mrr_at_3
value: 72.918
- type: mrr_at_5
value: 73.965
- type: ndcg_at_1
value: 66.891
- type: ndcg_at_10
value: 77.534
- type: ndcg_at_100
value: 79.106
- type: ndcg_at_1000
value: 79.494
- type: ndcg_at_3
value: 74.13499999999999
- type: ndcg_at_5
value: 76.20700000000001
- type: precision_at_1
value: 66.891
- type: precision_at_10
value: 9.375
- type: precision_at_100
value: 1.0170000000000001
- type: precision_at_1000
value: 0.105
- type: precision_at_3
value: 27.932000000000002
- type: precision_at_5
value: 17.86
- type: recall_at_1
value: 64.685
- type: recall_at_10
value: 88.298
- type: recall_at_100
value: 95.426
- type: recall_at_1000
value: 98.48700000000001
- type: recall_at_3
value: 79.44200000000001
- type: recall_at_5
value: 84.358
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (zh-CN)
type: mteb/amazon_massive_intent
config: zh-CN
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 73.30531271015468
- type: f1
value: 70.88091430578575
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (zh-CN)
type: mteb/amazon_massive_scenario
config: zh-CN
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 75.7128446536651
- type: f1
value: 75.06125593532262
- task:
type: Retrieval
dataset:
name: MTEB MedicalRetrieval
type: C-MTEB/MedicalRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 52.7
- type: map_at_10
value: 59.532
- type: map_at_100
value: 60.085
- type: map_at_1000
value: 60.126000000000005
- type: map_at_3
value: 57.767
- type: map_at_5
value: 58.952000000000005
- type: mrr_at_1
value: 52.900000000000006
- type: mrr_at_10
value: 59.648999999999994
- type: mrr_at_100
value: 60.20100000000001
- type: mrr_at_1000
value: 60.242
- type: mrr_at_3
value: 57.882999999999996
- type: mrr_at_5
value: 59.068
- type: ndcg_at_1
value: 52.7
- type: ndcg_at_10
value: 62.883
- type: ndcg_at_100
value: 65.714
- type: ndcg_at_1000
value: 66.932
- type: ndcg_at_3
value: 59.34700000000001
- type: ndcg_at_5
value: 61.486
- type: precision_at_1
value: 52.7
- type: precision_at_10
value: 7.340000000000001
- type: precision_at_100
value: 0.8699999999999999
- type: precision_at_1000
value: 0.097
- type: precision_at_3
value: 21.3
- type: precision_at_5
value: 13.819999999999999
- type: recall_at_1
value: 52.7
- type: recall_at_10
value: 73.4
- type: recall_at_100
value: 87.0
- type: recall_at_1000
value: 96.8
- type: recall_at_3
value: 63.9
- type: recall_at_5
value: 69.1
- task:
type: Classification
dataset:
name: MTEB MultilingualSentiment
type: C-MTEB/MultilingualSentiment-classification
config: default
split: validation
revision: None
metrics:
- type: accuracy
value: 76.47666666666667
- type: f1
value: 76.4808576632057
- task:
type: PairClassification
dataset:
name: MTEB Ocnli
type: C-MTEB/OCNLI
config: default
split: validation
revision: None
metrics:
- type: cos_sim_accuracy
value: 77.58527341635084
- type: cos_sim_ap
value: 79.32131557636497
- type: cos_sim_f1
value: 80.51948051948052
- type: cos_sim_precision
value: 71.7948717948718
- type: cos_sim_recall
value: 91.65786694825766
- type: dot_accuracy
value: 77.58527341635084
- type: dot_ap
value: 79.32131557636497
- type: dot_f1
value: 80.51948051948052
- type: dot_precision
value: 71.7948717948718
- type: dot_recall
value: 91.65786694825766
- type: euclidean_accuracy
value: 77.58527341635084
- type: euclidean_ap
value: 79.32131557636497
- type: euclidean_f1
value: 80.51948051948052
- type: euclidean_precision
value: 71.7948717948718
- type: euclidean_recall
value: 91.65786694825766
- type: manhattan_accuracy
value: 77.15213860314023
- type: manhattan_ap
value: 79.26178519246496
- type: manhattan_f1
value: 80.22028453418999
- type: manhattan_precision
value: 70.94155844155844
- type: manhattan_recall
value: 92.29144667370645
- type: max_accuracy
value: 77.58527341635084
- type: max_ap
value: 79.32131557636497
- type: max_f1
value: 80.51948051948052
- task:
type: Classification
dataset:
name: MTEB OnlineShopping
type: C-MTEB/OnlineShopping-classification
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 92.68
- type: ap
value: 90.78652757815115
- type: f1
value: 92.67153098230253
- task:
type: STS
dataset:
name: MTEB PAWSX
type: C-MTEB/PAWSX
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 35.301730226895955
- type: cos_sim_spearman
value: 38.54612530948101
- type: euclidean_pearson
value: 39.02831131230217
- type: euclidean_spearman
value: 38.54612530948101
- type: manhattan_pearson
value: 39.04765584936325
- type: manhattan_spearman
value: 38.54455759013173
- task:
type: STS
dataset:
name: MTEB QBQTC
type: C-MTEB/QBQTC
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 32.27907454729754
- type: cos_sim_spearman
value: 33.35945567162729
- type: euclidean_pearson
value: 31.997628193815725
- type: euclidean_spearman
value: 33.3592386340529
- type: manhattan_pearson
value: 31.97117833750544
- type: manhattan_spearman
value: 33.30857326127779
- task:
type: STS
dataset:
name: MTEB STS22 (zh)
type: mteb/sts22-crosslingual-sts
config: zh
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 62.53712784446981
- type: cos_sim_spearman
value: 62.975074386224286
- type: euclidean_pearson
value: 61.791207731290854
- type: euclidean_spearman
value: 62.975073716988064
- type: manhattan_pearson
value: 62.63850653150875
- type: manhattan_spearman
value: 63.56640346497343
- task:
type: STS
dataset:
name: MTEB STSB
type: C-MTEB/STSB
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 79.52067424748047
- type: cos_sim_spearman
value: 79.68425102631514
- type: euclidean_pearson
value: 79.27553959329275
- type: euclidean_spearman
value: 79.68450427089856
- type: manhattan_pearson
value: 79.21584650471131
- type: manhattan_spearman
value: 79.6419242840243
- task:
type: Reranking
dataset:
name: MTEB T2Reranking
type: C-MTEB/T2Reranking
config: default
split: dev
revision: None
metrics:
- type: map
value: 65.8563449629786
- type: mrr
value: 75.82550832339254
- task:
type: Retrieval
dataset:
name: MTEB T2Retrieval
type: C-MTEB/T2Retrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 27.889999999999997
- type: map_at_10
value: 72.878
- type: map_at_100
value: 76.737
- type: map_at_1000
value: 76.836
- type: map_at_3
value: 52.738
- type: map_at_5
value: 63.726000000000006
- type: mrr_at_1
value: 89.35600000000001
- type: mrr_at_10
value: 92.622
- type: mrr_at_100
value: 92.692
- type: mrr_at_1000
value: 92.694
- type: mrr_at_3
value: 92.13799999999999
- type: mrr_at_5
value: 92.452
- type: ndcg_at_1
value: 89.35600000000001
- type: ndcg_at_10
value: 81.932
- type: ndcg_at_100
value: 86.351
- type: ndcg_at_1000
value: 87.221
- type: ndcg_at_3
value: 84.29100000000001
- type: ndcg_at_5
value: 82.279
- type: precision_at_1
value: 89.35600000000001
- type: precision_at_10
value: 39.511
- type: precision_at_100
value: 4.901
- type: precision_at_1000
value: 0.513
- type: precision_at_3
value: 72.62100000000001
- type: precision_at_5
value: 59.918000000000006
- type: recall_at_1
value: 27.889999999999997
- type: recall_at_10
value: 80.636
- type: recall_at_100
value: 94.333
- type: recall_at_1000
value: 98.39099999999999
- type: recall_at_3
value: 54.797
- type: recall_at_5
value: 67.824
- task:
type: Classification
dataset:
name: MTEB TNews
type: C-MTEB/TNews-classification
config: default
split: validation
revision: None
metrics:
- type: accuracy
value: 51.979000000000006
- type: f1
value: 50.35658238894168
- task:
type: Clustering
dataset:
name: MTEB ThuNewsClusteringP2P
type: C-MTEB/ThuNewsClusteringP2P
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 68.36477832710159
- task:
type: Clustering
dataset:
name: MTEB ThuNewsClusteringS2S
type: C-MTEB/ThuNewsClusteringS2S
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 62.92080622759053
- task:
type: Retrieval
dataset:
name: MTEB VideoRetrieval
type: C-MTEB/VideoRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 59.3
- type: map_at_10
value: 69.299
- type: map_at_100
value: 69.669
- type: map_at_1000
value: 69.682
- type: map_at_3
value: 67.583
- type: map_at_5
value: 68.57799999999999
- type: mrr_at_1
value: 59.3
- type: mrr_at_10
value: 69.299
- type: mrr_at_100
value: 69.669
- type: mrr_at_1000
value: 69.682
- type: mrr_at_3
value: 67.583
- type: mrr_at_5
value: 68.57799999999999
- type: ndcg_at_1
value: 59.3
- type: ndcg_at_10
value: 73.699
- type: ndcg_at_100
value: 75.626
- type: ndcg_at_1000
value: 75.949
- type: ndcg_at_3
value: 70.18900000000001
- type: ndcg_at_5
value: 71.992
- type: precision_at_1
value: 59.3
- type: precision_at_10
value: 8.73
- type: precision_at_100
value: 0.9650000000000001
- type: precision_at_1000
value: 0.099
- type: precision_at_3
value: 25.900000000000002
- type: precision_at_5
value: 16.42
- type: recall_at_1
value: 59.3
- type: recall_at_10
value: 87.3
- type: recall_at_100
value: 96.5
- type: recall_at_1000
value: 99.0
- type: recall_at_3
value: 77.7
- type: recall_at_5
value: 82.1
- task:
type: Classification
dataset:
name: MTEB Waimai
type: C-MTEB/waimai-classification
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 88.36999999999999
- type: ap
value: 73.29590829222836
- type: f1
value: 86.74250506247606
---
# linlueird/gte-large-zh-GGUF
This model was converted to GGUF format from [`thenlper/gte-large-zh`](https://huggingface.co/thenlper/gte-large-zh) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/thenlper/gte-large-zh) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo linlueird/gte-large-zh-GGUF --hf-file gte-large-zh-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo linlueird/gte-large-zh-GGUF --hf-file gte-large-zh-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo linlueird/gte-large-zh-GGUF --hf-file gte-large-zh-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo linlueird/gte-large-zh-GGUF --hf-file gte-large-zh-q4_k_m.gguf -c 2048
```