linlueird commited on
Commit
723fe5c
·
verified ·
1 Parent(s): 17d7225

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +1109 -0
README.md ADDED
@@ -0,0 +1,1109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - mteb
4
+ - sentence-similarity
5
+ - sentence-transformers
6
+ - Sentence Transformers
7
+ - llama-cpp
8
+ - gguf-my-repo
9
+ language:
10
+ - en
11
+ license: mit
12
+ base_model: thenlper/gte-large-zh
13
+ model-index:
14
+ - name: gte-large-zh
15
+ results:
16
+ - task:
17
+ type: STS
18
+ dataset:
19
+ name: MTEB AFQMC
20
+ type: C-MTEB/AFQMC
21
+ config: default
22
+ split: validation
23
+ revision: None
24
+ metrics:
25
+ - type: cos_sim_pearson
26
+ value: 48.94131905219026
27
+ - type: cos_sim_spearman
28
+ value: 54.58261199731436
29
+ - type: euclidean_pearson
30
+ value: 52.73929210805982
31
+ - type: euclidean_spearman
32
+ value: 54.582632097533676
33
+ - type: manhattan_pearson
34
+ value: 52.73123295724949
35
+ - type: manhattan_spearman
36
+ value: 54.572941830465794
37
+ - task:
38
+ type: STS
39
+ dataset:
40
+ name: MTEB ATEC
41
+ type: C-MTEB/ATEC
42
+ config: default
43
+ split: test
44
+ revision: None
45
+ metrics:
46
+ - type: cos_sim_pearson
47
+ value: 47.292931669579005
48
+ - type: cos_sim_spearman
49
+ value: 54.601019783506466
50
+ - type: euclidean_pearson
51
+ value: 54.61393532658173
52
+ - type: euclidean_spearman
53
+ value: 54.60101865708542
54
+ - type: manhattan_pearson
55
+ value: 54.59369555606305
56
+ - type: manhattan_spearman
57
+ value: 54.601098593646036
58
+ - task:
59
+ type: Classification
60
+ dataset:
61
+ name: MTEB AmazonReviewsClassification (zh)
62
+ type: mteb/amazon_reviews_multi
63
+ config: zh
64
+ split: test
65
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
66
+ metrics:
67
+ - type: accuracy
68
+ value: 47.233999999999995
69
+ - type: f1
70
+ value: 45.68998446563349
71
+ - task:
72
+ type: STS
73
+ dataset:
74
+ name: MTEB BQ
75
+ type: C-MTEB/BQ
76
+ config: default
77
+ split: test
78
+ revision: None
79
+ metrics:
80
+ - type: cos_sim_pearson
81
+ value: 62.55033151404683
82
+ - type: cos_sim_spearman
83
+ value: 64.40573802644984
84
+ - type: euclidean_pearson
85
+ value: 62.93453281081951
86
+ - type: euclidean_spearman
87
+ value: 64.40574149035828
88
+ - type: manhattan_pearson
89
+ value: 62.839969210895816
90
+ - type: manhattan_spearman
91
+ value: 64.30837945045283
92
+ - task:
93
+ type: Clustering
94
+ dataset:
95
+ name: MTEB CLSClusteringP2P
96
+ type: C-MTEB/CLSClusteringP2P
97
+ config: default
98
+ split: test
99
+ revision: None
100
+ metrics:
101
+ - type: v_measure
102
+ value: 42.098169316685045
103
+ - task:
104
+ type: Clustering
105
+ dataset:
106
+ name: MTEB CLSClusteringS2S
107
+ type: C-MTEB/CLSClusteringS2S
108
+ config: default
109
+ split: test
110
+ revision: None
111
+ metrics:
112
+ - type: v_measure
113
+ value: 38.90716707051822
114
+ - task:
115
+ type: Reranking
116
+ dataset:
117
+ name: MTEB CMedQAv1
118
+ type: C-MTEB/CMedQAv1-reranking
119
+ config: default
120
+ split: test
121
+ revision: None
122
+ metrics:
123
+ - type: map
124
+ value: 86.09191911031553
125
+ - type: mrr
126
+ value: 88.6747619047619
127
+ - task:
128
+ type: Reranking
129
+ dataset:
130
+ name: MTEB CMedQAv2
131
+ type: C-MTEB/CMedQAv2-reranking
132
+ config: default
133
+ split: test
134
+ revision: None
135
+ metrics:
136
+ - type: map
137
+ value: 86.45781885502122
138
+ - type: mrr
139
+ value: 89.01591269841269
140
+ - task:
141
+ type: Retrieval
142
+ dataset:
143
+ name: MTEB CmedqaRetrieval
144
+ type: C-MTEB/CmedqaRetrieval
145
+ config: default
146
+ split: dev
147
+ revision: None
148
+ metrics:
149
+ - type: map_at_1
150
+ value: 24.215
151
+ - type: map_at_10
152
+ value: 36.498000000000005
153
+ - type: map_at_100
154
+ value: 38.409
155
+ - type: map_at_1000
156
+ value: 38.524
157
+ - type: map_at_3
158
+ value: 32.428000000000004
159
+ - type: map_at_5
160
+ value: 34.664
161
+ - type: mrr_at_1
162
+ value: 36.834
163
+ - type: mrr_at_10
164
+ value: 45.196
165
+ - type: mrr_at_100
166
+ value: 46.214
167
+ - type: mrr_at_1000
168
+ value: 46.259
169
+ - type: mrr_at_3
170
+ value: 42.631
171
+ - type: mrr_at_5
172
+ value: 44.044
173
+ - type: ndcg_at_1
174
+ value: 36.834
175
+ - type: ndcg_at_10
176
+ value: 43.146
177
+ - type: ndcg_at_100
178
+ value: 50.632999999999996
179
+ - type: ndcg_at_1000
180
+ value: 52.608999999999995
181
+ - type: ndcg_at_3
182
+ value: 37.851
183
+ - type: ndcg_at_5
184
+ value: 40.005
185
+ - type: precision_at_1
186
+ value: 36.834
187
+ - type: precision_at_10
188
+ value: 9.647
189
+ - type: precision_at_100
190
+ value: 1.574
191
+ - type: precision_at_1000
192
+ value: 0.183
193
+ - type: precision_at_3
194
+ value: 21.48
195
+ - type: precision_at_5
196
+ value: 15.649
197
+ - type: recall_at_1
198
+ value: 24.215
199
+ - type: recall_at_10
200
+ value: 54.079
201
+ - type: recall_at_100
202
+ value: 84.943
203
+ - type: recall_at_1000
204
+ value: 98.098
205
+ - type: recall_at_3
206
+ value: 38.117000000000004
207
+ - type: recall_at_5
208
+ value: 44.775999999999996
209
+ - task:
210
+ type: PairClassification
211
+ dataset:
212
+ name: MTEB Cmnli
213
+ type: C-MTEB/CMNLI
214
+ config: default
215
+ split: validation
216
+ revision: None
217
+ metrics:
218
+ - type: cos_sim_accuracy
219
+ value: 82.51352976548407
220
+ - type: cos_sim_ap
221
+ value: 89.49905141462749
222
+ - type: cos_sim_f1
223
+ value: 83.89334489486234
224
+ - type: cos_sim_precision
225
+ value: 78.19761567993534
226
+ - type: cos_sim_recall
227
+ value: 90.48398410100538
228
+ - type: dot_accuracy
229
+ value: 82.51352976548407
230
+ - type: dot_ap
231
+ value: 89.49108293121158
232
+ - type: dot_f1
233
+ value: 83.89334489486234
234
+ - type: dot_precision
235
+ value: 78.19761567993534
236
+ - type: dot_recall
237
+ value: 90.48398410100538
238
+ - type: euclidean_accuracy
239
+ value: 82.51352976548407
240
+ - type: euclidean_ap
241
+ value: 89.49904709975154
242
+ - type: euclidean_f1
243
+ value: 83.89334489486234
244
+ - type: euclidean_precision
245
+ value: 78.19761567993534
246
+ - type: euclidean_recall
247
+ value: 90.48398410100538
248
+ - type: manhattan_accuracy
249
+ value: 82.48947684906794
250
+ - type: manhattan_ap
251
+ value: 89.49231995962901
252
+ - type: manhattan_f1
253
+ value: 83.84681215233205
254
+ - type: manhattan_precision
255
+ value: 77.28258726089528
256
+ - type: manhattan_recall
257
+ value: 91.62964694879588
258
+ - type: max_accuracy
259
+ value: 82.51352976548407
260
+ - type: max_ap
261
+ value: 89.49905141462749
262
+ - type: max_f1
263
+ value: 83.89334489486234
264
+ - task:
265
+ type: Retrieval
266
+ dataset:
267
+ name: MTEB CovidRetrieval
268
+ type: C-MTEB/CovidRetrieval
269
+ config: default
270
+ split: dev
271
+ revision: None
272
+ metrics:
273
+ - type: map_at_1
274
+ value: 78.583
275
+ - type: map_at_10
276
+ value: 85.613
277
+ - type: map_at_100
278
+ value: 85.777
279
+ - type: map_at_1000
280
+ value: 85.77900000000001
281
+ - type: map_at_3
282
+ value: 84.58
283
+ - type: map_at_5
284
+ value: 85.22800000000001
285
+ - type: mrr_at_1
286
+ value: 78.925
287
+ - type: mrr_at_10
288
+ value: 85.667
289
+ - type: mrr_at_100
290
+ value: 85.822
291
+ - type: mrr_at_1000
292
+ value: 85.824
293
+ - type: mrr_at_3
294
+ value: 84.651
295
+ - type: mrr_at_5
296
+ value: 85.299
297
+ - type: ndcg_at_1
298
+ value: 78.925
299
+ - type: ndcg_at_10
300
+ value: 88.405
301
+ - type: ndcg_at_100
302
+ value: 89.02799999999999
303
+ - type: ndcg_at_1000
304
+ value: 89.093
305
+ - type: ndcg_at_3
306
+ value: 86.393
307
+ - type: ndcg_at_5
308
+ value: 87.5
309
+ - type: precision_at_1
310
+ value: 78.925
311
+ - type: precision_at_10
312
+ value: 9.789
313
+ - type: precision_at_100
314
+ value: 1.005
315
+ - type: precision_at_1000
316
+ value: 0.101
317
+ - type: precision_at_3
318
+ value: 30.769000000000002
319
+ - type: precision_at_5
320
+ value: 19.031000000000002
321
+ - type: recall_at_1
322
+ value: 78.583
323
+ - type: recall_at_10
324
+ value: 96.891
325
+ - type: recall_at_100
326
+ value: 99.473
327
+ - type: recall_at_1000
328
+ value: 100.0
329
+ - type: recall_at_3
330
+ value: 91.438
331
+ - type: recall_at_5
332
+ value: 94.152
333
+ - task:
334
+ type: Retrieval
335
+ dataset:
336
+ name: MTEB DuRetrieval
337
+ type: C-MTEB/DuRetrieval
338
+ config: default
339
+ split: dev
340
+ revision: None
341
+ metrics:
342
+ - type: map_at_1
343
+ value: 25.604
344
+ - type: map_at_10
345
+ value: 77.171
346
+ - type: map_at_100
347
+ value: 80.033
348
+ - type: map_at_1000
349
+ value: 80.099
350
+ - type: map_at_3
351
+ value: 54.364000000000004
352
+ - type: map_at_5
353
+ value: 68.024
354
+ - type: mrr_at_1
355
+ value: 89.85
356
+ - type: mrr_at_10
357
+ value: 93.009
358
+ - type: mrr_at_100
359
+ value: 93.065
360
+ - type: mrr_at_1000
361
+ value: 93.068
362
+ - type: mrr_at_3
363
+ value: 92.72500000000001
364
+ - type: mrr_at_5
365
+ value: 92.915
366
+ - type: ndcg_at_1
367
+ value: 89.85
368
+ - type: ndcg_at_10
369
+ value: 85.038
370
+ - type: ndcg_at_100
371
+ value: 88.247
372
+ - type: ndcg_at_1000
373
+ value: 88.837
374
+ - type: ndcg_at_3
375
+ value: 85.20299999999999
376
+ - type: ndcg_at_5
377
+ value: 83.47
378
+ - type: precision_at_1
379
+ value: 89.85
380
+ - type: precision_at_10
381
+ value: 40.275
382
+ - type: precision_at_100
383
+ value: 4.709
384
+ - type: precision_at_1000
385
+ value: 0.486
386
+ - type: precision_at_3
387
+ value: 76.36699999999999
388
+ - type: precision_at_5
389
+ value: 63.75999999999999
390
+ - type: recall_at_1
391
+ value: 25.604
392
+ - type: recall_at_10
393
+ value: 85.423
394
+ - type: recall_at_100
395
+ value: 95.695
396
+ - type: recall_at_1000
397
+ value: 98.669
398
+ - type: recall_at_3
399
+ value: 56.737
400
+ - type: recall_at_5
401
+ value: 72.646
402
+ - task:
403
+ type: Retrieval
404
+ dataset:
405
+ name: MTEB EcomRetrieval
406
+ type: C-MTEB/EcomRetrieval
407
+ config: default
408
+ split: dev
409
+ revision: None
410
+ metrics:
411
+ - type: map_at_1
412
+ value: 51.800000000000004
413
+ - type: map_at_10
414
+ value: 62.17
415
+ - type: map_at_100
416
+ value: 62.649
417
+ - type: map_at_1000
418
+ value: 62.663000000000004
419
+ - type: map_at_3
420
+ value: 59.699999999999996
421
+ - type: map_at_5
422
+ value: 61.23499999999999
423
+ - type: mrr_at_1
424
+ value: 51.800000000000004
425
+ - type: mrr_at_10
426
+ value: 62.17
427
+ - type: mrr_at_100
428
+ value: 62.649
429
+ - type: mrr_at_1000
430
+ value: 62.663000000000004
431
+ - type: mrr_at_3
432
+ value: 59.699999999999996
433
+ - type: mrr_at_5
434
+ value: 61.23499999999999
435
+ - type: ndcg_at_1
436
+ value: 51.800000000000004
437
+ - type: ndcg_at_10
438
+ value: 67.246
439
+ - type: ndcg_at_100
440
+ value: 69.58
441
+ - type: ndcg_at_1000
442
+ value: 69.925
443
+ - type: ndcg_at_3
444
+ value: 62.197
445
+ - type: ndcg_at_5
446
+ value: 64.981
447
+ - type: precision_at_1
448
+ value: 51.800000000000004
449
+ - type: precision_at_10
450
+ value: 8.32
451
+ - type: precision_at_100
452
+ value: 0.941
453
+ - type: precision_at_1000
454
+ value: 0.097
455
+ - type: precision_at_3
456
+ value: 23.133
457
+ - type: precision_at_5
458
+ value: 15.24
459
+ - type: recall_at_1
460
+ value: 51.800000000000004
461
+ - type: recall_at_10
462
+ value: 83.2
463
+ - type: recall_at_100
464
+ value: 94.1
465
+ - type: recall_at_1000
466
+ value: 96.8
467
+ - type: recall_at_3
468
+ value: 69.39999999999999
469
+ - type: recall_at_5
470
+ value: 76.2
471
+ - task:
472
+ type: Classification
473
+ dataset:
474
+ name: MTEB IFlyTek
475
+ type: C-MTEB/IFlyTek-classification
476
+ config: default
477
+ split: validation
478
+ revision: None
479
+ metrics:
480
+ - type: accuracy
481
+ value: 49.60369372835706
482
+ - type: f1
483
+ value: 38.24016248875209
484
+ - task:
485
+ type: Classification
486
+ dataset:
487
+ name: MTEB JDReview
488
+ type: C-MTEB/JDReview-classification
489
+ config: default
490
+ split: test
491
+ revision: None
492
+ metrics:
493
+ - type: accuracy
494
+ value: 86.71669793621012
495
+ - type: ap
496
+ value: 55.75807094995178
497
+ - type: f1
498
+ value: 81.59033162805417
499
+ - task:
500
+ type: STS
501
+ dataset:
502
+ name: MTEB LCQMC
503
+ type: C-MTEB/LCQMC
504
+ config: default
505
+ split: test
506
+ revision: None
507
+ metrics:
508
+ - type: cos_sim_pearson
509
+ value: 69.50947272908907
510
+ - type: cos_sim_spearman
511
+ value: 74.40054474949213
512
+ - type: euclidean_pearson
513
+ value: 73.53007373987617
514
+ - type: euclidean_spearman
515
+ value: 74.40054474732082
516
+ - type: manhattan_pearson
517
+ value: 73.51396571849736
518
+ - type: manhattan_spearman
519
+ value: 74.38395696630835
520
+ - task:
521
+ type: Reranking
522
+ dataset:
523
+ name: MTEB MMarcoReranking
524
+ type: C-MTEB/Mmarco-reranking
525
+ config: default
526
+ split: dev
527
+ revision: None
528
+ metrics:
529
+ - type: map
530
+ value: 31.188333827724108
531
+ - type: mrr
532
+ value: 29.84801587301587
533
+ - task:
534
+ type: Retrieval
535
+ dataset:
536
+ name: MTEB MMarcoRetrieval
537
+ type: C-MTEB/MMarcoRetrieval
538
+ config: default
539
+ split: dev
540
+ revision: None
541
+ metrics:
542
+ - type: map_at_1
543
+ value: 64.685
544
+ - type: map_at_10
545
+ value: 73.803
546
+ - type: map_at_100
547
+ value: 74.153
548
+ - type: map_at_1000
549
+ value: 74.167
550
+ - type: map_at_3
551
+ value: 71.98
552
+ - type: map_at_5
553
+ value: 73.21600000000001
554
+ - type: mrr_at_1
555
+ value: 66.891
556
+ - type: mrr_at_10
557
+ value: 74.48700000000001
558
+ - type: mrr_at_100
559
+ value: 74.788
560
+ - type: mrr_at_1000
561
+ value: 74.801
562
+ - type: mrr_at_3
563
+ value: 72.918
564
+ - type: mrr_at_5
565
+ value: 73.965
566
+ - type: ndcg_at_1
567
+ value: 66.891
568
+ - type: ndcg_at_10
569
+ value: 77.534
570
+ - type: ndcg_at_100
571
+ value: 79.106
572
+ - type: ndcg_at_1000
573
+ value: 79.494
574
+ - type: ndcg_at_3
575
+ value: 74.13499999999999
576
+ - type: ndcg_at_5
577
+ value: 76.20700000000001
578
+ - type: precision_at_1
579
+ value: 66.891
580
+ - type: precision_at_10
581
+ value: 9.375
582
+ - type: precision_at_100
583
+ value: 1.0170000000000001
584
+ - type: precision_at_1000
585
+ value: 0.105
586
+ - type: precision_at_3
587
+ value: 27.932000000000002
588
+ - type: precision_at_5
589
+ value: 17.86
590
+ - type: recall_at_1
591
+ value: 64.685
592
+ - type: recall_at_10
593
+ value: 88.298
594
+ - type: recall_at_100
595
+ value: 95.426
596
+ - type: recall_at_1000
597
+ value: 98.48700000000001
598
+ - type: recall_at_3
599
+ value: 79.44200000000001
600
+ - type: recall_at_5
601
+ value: 84.358
602
+ - task:
603
+ type: Classification
604
+ dataset:
605
+ name: MTEB MassiveIntentClassification (zh-CN)
606
+ type: mteb/amazon_massive_intent
607
+ config: zh-CN
608
+ split: test
609
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
610
+ metrics:
611
+ - type: accuracy
612
+ value: 73.30531271015468
613
+ - type: f1
614
+ value: 70.88091430578575
615
+ - task:
616
+ type: Classification
617
+ dataset:
618
+ name: MTEB MassiveScenarioClassification (zh-CN)
619
+ type: mteb/amazon_massive_scenario
620
+ config: zh-CN
621
+ split: test
622
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
623
+ metrics:
624
+ - type: accuracy
625
+ value: 75.7128446536651
626
+ - type: f1
627
+ value: 75.06125593532262
628
+ - task:
629
+ type: Retrieval
630
+ dataset:
631
+ name: MTEB MedicalRetrieval
632
+ type: C-MTEB/MedicalRetrieval
633
+ config: default
634
+ split: dev
635
+ revision: None
636
+ metrics:
637
+ - type: map_at_1
638
+ value: 52.7
639
+ - type: map_at_10
640
+ value: 59.532
641
+ - type: map_at_100
642
+ value: 60.085
643
+ - type: map_at_1000
644
+ value: 60.126000000000005
645
+ - type: map_at_3
646
+ value: 57.767
647
+ - type: map_at_5
648
+ value: 58.952000000000005
649
+ - type: mrr_at_1
650
+ value: 52.900000000000006
651
+ - type: mrr_at_10
652
+ value: 59.648999999999994
653
+ - type: mrr_at_100
654
+ value: 60.20100000000001
655
+ - type: mrr_at_1000
656
+ value: 60.242
657
+ - type: mrr_at_3
658
+ value: 57.882999999999996
659
+ - type: mrr_at_5
660
+ value: 59.068
661
+ - type: ndcg_at_1
662
+ value: 52.7
663
+ - type: ndcg_at_10
664
+ value: 62.883
665
+ - type: ndcg_at_100
666
+ value: 65.714
667
+ - type: ndcg_at_1000
668
+ value: 66.932
669
+ - type: ndcg_at_3
670
+ value: 59.34700000000001
671
+ - type: ndcg_at_5
672
+ value: 61.486
673
+ - type: precision_at_1
674
+ value: 52.7
675
+ - type: precision_at_10
676
+ value: 7.340000000000001
677
+ - type: precision_at_100
678
+ value: 0.8699999999999999
679
+ - type: precision_at_1000
680
+ value: 0.097
681
+ - type: precision_at_3
682
+ value: 21.3
683
+ - type: precision_at_5
684
+ value: 13.819999999999999
685
+ - type: recall_at_1
686
+ value: 52.7
687
+ - type: recall_at_10
688
+ value: 73.4
689
+ - type: recall_at_100
690
+ value: 87.0
691
+ - type: recall_at_1000
692
+ value: 96.8
693
+ - type: recall_at_3
694
+ value: 63.9
695
+ - type: recall_at_5
696
+ value: 69.1
697
+ - task:
698
+ type: Classification
699
+ dataset:
700
+ name: MTEB MultilingualSentiment
701
+ type: C-MTEB/MultilingualSentiment-classification
702
+ config: default
703
+ split: validation
704
+ revision: None
705
+ metrics:
706
+ - type: accuracy
707
+ value: 76.47666666666667
708
+ - type: f1
709
+ value: 76.4808576632057
710
+ - task:
711
+ type: PairClassification
712
+ dataset:
713
+ name: MTEB Ocnli
714
+ type: C-MTEB/OCNLI
715
+ config: default
716
+ split: validation
717
+ revision: None
718
+ metrics:
719
+ - type: cos_sim_accuracy
720
+ value: 77.58527341635084
721
+ - type: cos_sim_ap
722
+ value: 79.32131557636497
723
+ - type: cos_sim_f1
724
+ value: 80.51948051948052
725
+ - type: cos_sim_precision
726
+ value: 71.7948717948718
727
+ - type: cos_sim_recall
728
+ value: 91.65786694825766
729
+ - type: dot_accuracy
730
+ value: 77.58527341635084
731
+ - type: dot_ap
732
+ value: 79.32131557636497
733
+ - type: dot_f1
734
+ value: 80.51948051948052
735
+ - type: dot_precision
736
+ value: 71.7948717948718
737
+ - type: dot_recall
738
+ value: 91.65786694825766
739
+ - type: euclidean_accuracy
740
+ value: 77.58527341635084
741
+ - type: euclidean_ap
742
+ value: 79.32131557636497
743
+ - type: euclidean_f1
744
+ value: 80.51948051948052
745
+ - type: euclidean_precision
746
+ value: 71.7948717948718
747
+ - type: euclidean_recall
748
+ value: 91.65786694825766
749
+ - type: manhattan_accuracy
750
+ value: 77.15213860314023
751
+ - type: manhattan_ap
752
+ value: 79.26178519246496
753
+ - type: manhattan_f1
754
+ value: 80.22028453418999
755
+ - type: manhattan_precision
756
+ value: 70.94155844155844
757
+ - type: manhattan_recall
758
+ value: 92.29144667370645
759
+ - type: max_accuracy
760
+ value: 77.58527341635084
761
+ - type: max_ap
762
+ value: 79.32131557636497
763
+ - type: max_f1
764
+ value: 80.51948051948052
765
+ - task:
766
+ type: Classification
767
+ dataset:
768
+ name: MTEB OnlineShopping
769
+ type: C-MTEB/OnlineShopping-classification
770
+ config: default
771
+ split: test
772
+ revision: None
773
+ metrics:
774
+ - type: accuracy
775
+ value: 92.68
776
+ - type: ap
777
+ value: 90.78652757815115
778
+ - type: f1
779
+ value: 92.67153098230253
780
+ - task:
781
+ type: STS
782
+ dataset:
783
+ name: MTEB PAWSX
784
+ type: C-MTEB/PAWSX
785
+ config: default
786
+ split: test
787
+ revision: None
788
+ metrics:
789
+ - type: cos_sim_pearson
790
+ value: 35.301730226895955
791
+ - type: cos_sim_spearman
792
+ value: 38.54612530948101
793
+ - type: euclidean_pearson
794
+ value: 39.02831131230217
795
+ - type: euclidean_spearman
796
+ value: 38.54612530948101
797
+ - type: manhattan_pearson
798
+ value: 39.04765584936325
799
+ - type: manhattan_spearman
800
+ value: 38.54455759013173
801
+ - task:
802
+ type: STS
803
+ dataset:
804
+ name: MTEB QBQTC
805
+ type: C-MTEB/QBQTC
806
+ config: default
807
+ split: test
808
+ revision: None
809
+ metrics:
810
+ - type: cos_sim_pearson
811
+ value: 32.27907454729754
812
+ - type: cos_sim_spearman
813
+ value: 33.35945567162729
814
+ - type: euclidean_pearson
815
+ value: 31.997628193815725
816
+ - type: euclidean_spearman
817
+ value: 33.3592386340529
818
+ - type: manhattan_pearson
819
+ value: 31.97117833750544
820
+ - type: manhattan_spearman
821
+ value: 33.30857326127779
822
+ - task:
823
+ type: STS
824
+ dataset:
825
+ name: MTEB STS22 (zh)
826
+ type: mteb/sts22-crosslingual-sts
827
+ config: zh
828
+ split: test
829
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
830
+ metrics:
831
+ - type: cos_sim_pearson
832
+ value: 62.53712784446981
833
+ - type: cos_sim_spearman
834
+ value: 62.975074386224286
835
+ - type: euclidean_pearson
836
+ value: 61.791207731290854
837
+ - type: euclidean_spearman
838
+ value: 62.975073716988064
839
+ - type: manhattan_pearson
840
+ value: 62.63850653150875
841
+ - type: manhattan_spearman
842
+ value: 63.56640346497343
843
+ - task:
844
+ type: STS
845
+ dataset:
846
+ name: MTEB STSB
847
+ type: C-MTEB/STSB
848
+ config: default
849
+ split: test
850
+ revision: None
851
+ metrics:
852
+ - type: cos_sim_pearson
853
+ value: 79.52067424748047
854
+ - type: cos_sim_spearman
855
+ value: 79.68425102631514
856
+ - type: euclidean_pearson
857
+ value: 79.27553959329275
858
+ - type: euclidean_spearman
859
+ value: 79.68450427089856
860
+ - type: manhattan_pearson
861
+ value: 79.21584650471131
862
+ - type: manhattan_spearman
863
+ value: 79.6419242840243
864
+ - task:
865
+ type: Reranking
866
+ dataset:
867
+ name: MTEB T2Reranking
868
+ type: C-MTEB/T2Reranking
869
+ config: default
870
+ split: dev
871
+ revision: None
872
+ metrics:
873
+ - type: map
874
+ value: 65.8563449629786
875
+ - type: mrr
876
+ value: 75.82550832339254
877
+ - task:
878
+ type: Retrieval
879
+ dataset:
880
+ name: MTEB T2Retrieval
881
+ type: C-MTEB/T2Retrieval
882
+ config: default
883
+ split: dev
884
+ revision: None
885
+ metrics:
886
+ - type: map_at_1
887
+ value: 27.889999999999997
888
+ - type: map_at_10
889
+ value: 72.878
890
+ - type: map_at_100
891
+ value: 76.737
892
+ - type: map_at_1000
893
+ value: 76.836
894
+ - type: map_at_3
895
+ value: 52.738
896
+ - type: map_at_5
897
+ value: 63.726000000000006
898
+ - type: mrr_at_1
899
+ value: 89.35600000000001
900
+ - type: mrr_at_10
901
+ value: 92.622
902
+ - type: mrr_at_100
903
+ value: 92.692
904
+ - type: mrr_at_1000
905
+ value: 92.694
906
+ - type: mrr_at_3
907
+ value: 92.13799999999999
908
+ - type: mrr_at_5
909
+ value: 92.452
910
+ - type: ndcg_at_1
911
+ value: 89.35600000000001
912
+ - type: ndcg_at_10
913
+ value: 81.932
914
+ - type: ndcg_at_100
915
+ value: 86.351
916
+ - type: ndcg_at_1000
917
+ value: 87.221
918
+ - type: ndcg_at_3
919
+ value: 84.29100000000001
920
+ - type: ndcg_at_5
921
+ value: 82.279
922
+ - type: precision_at_1
923
+ value: 89.35600000000001
924
+ - type: precision_at_10
925
+ value: 39.511
926
+ - type: precision_at_100
927
+ value: 4.901
928
+ - type: precision_at_1000
929
+ value: 0.513
930
+ - type: precision_at_3
931
+ value: 72.62100000000001
932
+ - type: precision_at_5
933
+ value: 59.918000000000006
934
+ - type: recall_at_1
935
+ value: 27.889999999999997
936
+ - type: recall_at_10
937
+ value: 80.636
938
+ - type: recall_at_100
939
+ value: 94.333
940
+ - type: recall_at_1000
941
+ value: 98.39099999999999
942
+ - type: recall_at_3
943
+ value: 54.797
944
+ - type: recall_at_5
945
+ value: 67.824
946
+ - task:
947
+ type: Classification
948
+ dataset:
949
+ name: MTEB TNews
950
+ type: C-MTEB/TNews-classification
951
+ config: default
952
+ split: validation
953
+ revision: None
954
+ metrics:
955
+ - type: accuracy
956
+ value: 51.979000000000006
957
+ - type: f1
958
+ value: 50.35658238894168
959
+ - task:
960
+ type: Clustering
961
+ dataset:
962
+ name: MTEB ThuNewsClusteringP2P
963
+ type: C-MTEB/ThuNewsClusteringP2P
964
+ config: default
965
+ split: test
966
+ revision: None
967
+ metrics:
968
+ - type: v_measure
969
+ value: 68.36477832710159
970
+ - task:
971
+ type: Clustering
972
+ dataset:
973
+ name: MTEB ThuNewsClusteringS2S
974
+ type: C-MTEB/ThuNewsClusteringS2S
975
+ config: default
976
+ split: test
977
+ revision: None
978
+ metrics:
979
+ - type: v_measure
980
+ value: 62.92080622759053
981
+ - task:
982
+ type: Retrieval
983
+ dataset:
984
+ name: MTEB VideoRetrieval
985
+ type: C-MTEB/VideoRetrieval
986
+ config: default
987
+ split: dev
988
+ revision: None
989
+ metrics:
990
+ - type: map_at_1
991
+ value: 59.3
992
+ - type: map_at_10
993
+ value: 69.299
994
+ - type: map_at_100
995
+ value: 69.669
996
+ - type: map_at_1000
997
+ value: 69.682
998
+ - type: map_at_3
999
+ value: 67.583
1000
+ - type: map_at_5
1001
+ value: 68.57799999999999
1002
+ - type: mrr_at_1
1003
+ value: 59.3
1004
+ - type: mrr_at_10
1005
+ value: 69.299
1006
+ - type: mrr_at_100
1007
+ value: 69.669
1008
+ - type: mrr_at_1000
1009
+ value: 69.682
1010
+ - type: mrr_at_3
1011
+ value: 67.583
1012
+ - type: mrr_at_5
1013
+ value: 68.57799999999999
1014
+ - type: ndcg_at_1
1015
+ value: 59.3
1016
+ - type: ndcg_at_10
1017
+ value: 73.699
1018
+ - type: ndcg_at_100
1019
+ value: 75.626
1020
+ - type: ndcg_at_1000
1021
+ value: 75.949
1022
+ - type: ndcg_at_3
1023
+ value: 70.18900000000001
1024
+ - type: ndcg_at_5
1025
+ value: 71.992
1026
+ - type: precision_at_1
1027
+ value: 59.3
1028
+ - type: precision_at_10
1029
+ value: 8.73
1030
+ - type: precision_at_100
1031
+ value: 0.9650000000000001
1032
+ - type: precision_at_1000
1033
+ value: 0.099
1034
+ - type: precision_at_3
1035
+ value: 25.900000000000002
1036
+ - type: precision_at_5
1037
+ value: 16.42
1038
+ - type: recall_at_1
1039
+ value: 59.3
1040
+ - type: recall_at_10
1041
+ value: 87.3
1042
+ - type: recall_at_100
1043
+ value: 96.5
1044
+ - type: recall_at_1000
1045
+ value: 99.0
1046
+ - type: recall_at_3
1047
+ value: 77.7
1048
+ - type: recall_at_5
1049
+ value: 82.1
1050
+ - task:
1051
+ type: Classification
1052
+ dataset:
1053
+ name: MTEB Waimai
1054
+ type: C-MTEB/waimai-classification
1055
+ config: default
1056
+ split: test
1057
+ revision: None
1058
+ metrics:
1059
+ - type: accuracy
1060
+ value: 88.36999999999999
1061
+ - type: ap
1062
+ value: 73.29590829222836
1063
+ - type: f1
1064
+ value: 86.74250506247606
1065
+ ---
1066
+
1067
+ # linlueird/gte-large-zh-GGUF
1068
+ This model was converted to GGUF format from [`thenlper/gte-large-zh`](https://huggingface.co/thenlper/gte-large-zh) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
1069
+ Refer to the [original model card](https://huggingface.co/thenlper/gte-large-zh) for more details on the model.
1070
+
1071
+ ## Use with llama.cpp
1072
+ Install llama.cpp through brew (works on Mac and Linux)
1073
+
1074
+ ```bash
1075
+ brew install llama.cpp
1076
+
1077
+ ```
1078
+ Invoke the llama.cpp server or the CLI.
1079
+
1080
+ ### CLI:
1081
+ ```bash
1082
+ llama-cli --hf-repo linlueird/gte-large-zh-GGUF --hf-file gte-large-zh-q4_k_m.gguf -p "The meaning to life and the universe is"
1083
+ ```
1084
+
1085
+ ### Server:
1086
+ ```bash
1087
+ llama-server --hf-repo linlueird/gte-large-zh-GGUF --hf-file gte-large-zh-q4_k_m.gguf -c 2048
1088
+ ```
1089
+
1090
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
1091
+
1092
+ Step 1: Clone llama.cpp from GitHub.
1093
+ ```
1094
+ git clone https://github.com/ggerganov/llama.cpp
1095
+ ```
1096
+
1097
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
1098
+ ```
1099
+ cd llama.cpp && LLAMA_CURL=1 make
1100
+ ```
1101
+
1102
+ Step 3: Run inference through the main binary.
1103
+ ```
1104
+ ./llama-cli --hf-repo linlueird/gte-large-zh-GGUF --hf-file gte-large-zh-q4_k_m.gguf -p "The meaning to life and the universe is"
1105
+ ```
1106
+ or
1107
+ ```
1108
+ ./llama-server --hf-repo linlueird/gte-large-zh-GGUF --hf-file gte-large-zh-q4_k_m.gguf -c 2048
1109
+ ```