learn3r's picture
End of training
92a6484
metadata
base_model: >-
  /exports/eddie/scratch/s1970716/models/summarization/longt5_xl_gov_memsum_bp_10/checkpoint-1360
tags:
  - generated_from_trainer
datasets:
  - learn3r/gov_report_memsum_bp
metrics:
  - rouge
model-index:
  - name: longt5_xl_gov_memsum_bp_15
    results:
      - task:
          name: Summarization
          type: summarization
        dataset:
          name: learn3r/gov_report_memsum_bp
          type: learn3r/gov_report_memsum_bp
        metrics:
          - name: Rouge1
            type: rouge
            value: 35.319

longt5_xl_gov_memsum_bp_15

This model is a fine-tuned version of /exports/eddie/scratch/s1970716/models/summarization/longt5_xl_gov_memsum_bp_10/checkpoint-1360 on the learn3r/gov_report_memsum_bp dataset. It achieves the following results on the evaluation set:

  • Loss: 3.2731
  • Rouge1: 35.319
  • Rouge2: 11.8288
  • Rougel: 16.3777
  • Rougelsum: 33.5357
  • Gen Len: 1942.3155

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
0.1366 1.0 272 3.2731 35.319 11.8288 16.3777 33.5357 1942.3155
0.1183 2.0 545 3.3957 37.5265 12.4932 16.743 35.7285 1867.3145
0.1072 3.0 818 3.4308 41.1487 13.4035 17.5783 39.1233 1561.0853
0.0909 4.0 1091 3.6078 41.2814 13.3137 17.9878 39.2664 1429.4604
0.0834 4.99 1360 3.8803 42.0328 13.9186 17.8203 39.9705 1559.3237

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.14.1