--- base_model: /exports/eddie/scratch/s1970716/models/summarization/longt5_xl_gov_memsum_bp_10/checkpoint-1360 tags: - generated_from_trainer datasets: - learn3r/gov_report_memsum_bp metrics: - rouge model-index: - name: longt5_xl_gov_memsum_bp_15 results: - task: name: Summarization type: summarization dataset: name: learn3r/gov_report_memsum_bp type: learn3r/gov_report_memsum_bp metrics: - name: Rouge1 type: rouge value: 35.319 --- # longt5_xl_gov_memsum_bp_15 This model is a fine-tuned version of [/exports/eddie/scratch/s1970716/models/summarization/longt5_xl_gov_memsum_bp_10/checkpoint-1360](https://huggingface.co//exports/eddie/scratch/s1970716/models/summarization/longt5_xl_gov_memsum_bp_10/checkpoint-1360) on the learn3r/gov_report_memsum_bp dataset. It achieves the following results on the evaluation set: - Loss: 3.2731 - Rouge1: 35.319 - Rouge2: 11.8288 - Rougel: 16.3777 - Rougelsum: 33.5357 - Gen Len: 1942.3155 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:---------:| | 0.1366 | 1.0 | 272 | 3.2731 | 35.319 | 11.8288 | 16.3777 | 33.5357 | 1942.3155 | | 0.1183 | 2.0 | 545 | 3.3957 | 37.5265 | 12.4932 | 16.743 | 35.7285 | 1867.3145 | | 0.1072 | 3.0 | 818 | 3.4308 | 41.1487 | 13.4035 | 17.5783 | 39.1233 | 1561.0853 | | 0.0909 | 4.0 | 1091 | 3.6078 | 41.2814 | 13.3137 | 17.9878 | 39.2664 | 1429.4604 | | 0.0834 | 4.99 | 1360 | 3.8803 | 42.0328 | 13.9186 | 17.8203 | 39.9705 | 1559.3237 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1