File size: 6,048 Bytes
ad150d6
 
 
 
 
43402ae
ad150d6
 
 
43402ae
ad150d6
 
c0b13a2
43402ae
 
 
186904e
43402ae
 
bf05182
43402ae
c0b13a2
ba843bc
43402ae
ad150d6
 
43402ae
ad150d6
c0b13a2
ad150d6
43402ae
 
 
 
 
ad150d6
43402ae
ad150d6
43402ae
ad150d6
43402ae
 
c0b13a2
 
ba843bc
43402ae
 
ad150d6
43402ae
ad150d6
c0b13a2
 
43402ae
ad150d6
d0af702
 
 
83fdd44
d0af702
 
 
43402ae
 
ad150d6
c0b13a2
ad150d6
c0b13a2
43402ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba843bc
43402ae
 
 
 
 
 
 
 
ad150d6
c0b13a2
ad150d6
c0b13a2
43402ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63e8092
43402ae
 
 
 
 
 
 
 
 
 
 
 
ba843bc
43402ae
 
 
 
 
 
 
 
 
 
 
 
ad150d6
3a5d6c8
ba843bc
ad150d6
43402ae
 
 
c0b13a2
 
 
 
43402ae
c0b13a2
43402ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
---
language:
- en
- ko
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
model_id: kakaocorp/kanana-1.5-2.1b-base
repo: kakaocorp/kanana-1.5-2.1b-base
developers: Kanana LLM
training_regime: bf16 mixed precision
---

<p align="center">
<br>
    <picture>
        <img src="./assets/logo/kanana-logo.png" width="60%" style="margin: 40px auto;">
    </picture>
</br>

<p align="center">
πŸ€— <a href="https://kko.kakao.com/kananallm">1.5 HF Models</a> &nbsp |
&nbsp πŸ“• <a href="https://tech.kakao.com/posts/707">1.5 Blog</a> &nbsp |
&nbsp πŸ“œ <a href="https://arxiv.org/abs/2502.18934">Technical Report</a>


<br>

## News πŸ”₯

- ✨`2025/05/23`: Published a [blog post](https://tech.kakao.com/posts/707) about `Kanana 1.5` models and released πŸ€—[HF model weights](https://kko.kakao.com/kananallm).
- πŸ“œ`2025/02/27`: Released [Technical Report](https://arxiv.org/abs/2502.18934) and πŸ€—[HF model weights](https://huggingface.co/collections/kakaocorp/kanana-nano-21b-67a326cda1c449c8d4172259).
- πŸ“•`2025/01/10`: Published a [blog post](https://tech.kakao.com/posts/682) about the development of `Kanana Nano` model.
- πŸ“•`2024/11/14`: Published blog posts ([pre-training](https://tech.kakao.com/posts/661), [post-training](https://tech.kakao.com/posts/662)) about the development of `Kanana` models.
- ▢️`2024/11/06`: Published a [presentation video](https://youtu.be/HTBl142x9GI?si=o_we6t9suYK8DfX3) about the development of the `Kanana` models.

<br>

## Table of Contents

- [Kanana 1.5](#kanana-15)
    - [Performance](#performance)
        - [Base Model Evaluation](#base-model-evaluation)
        - [Instruct Model Evaluation](#instruct-model-evaluation)
- [Contributors](#contributors)
- [Citation](#citation)
- [Contact](#contact)

<br>

# Kanana 1.5

`Kanana 1.5`, a newly introduced version of the Kanana model family, presents substantial enhancements in **coding, mathematics, and function calling capabilities** over the previous version, enabling broader application to more complex real-world problems. This new version now can handle __up to 32K tokens length natively and up to 128K tokens using YaRN__, allowing the model to maintain coherence when handling extensive documents or engaging in extended conversations. Furthermore, Kanana 1.5 delivers more natural and accurate conversations through a __refined post-training process__.

<p align="center">
<br>
    <picture>
        <img src="./assets/performance/kanana-1.5-radar-2.1b.png" width="95%" style="margin: 40px auto;">
    </picture>
</br>

> [!Note]
> Neither the pre-training nor the post-training data includes Kakao user data.

## Performance

### Base Model Evaluation
<table>
    <tr>
        <th>Models</th>
        <th>MMLU</th>
        <th>KMMLU</th>
        <th>HAERAE</th>
        <th>HumanEval</th>
        <th>MBPP</th>
        <th>GSM8K</th>
    </tr>
    <tr>
        <td><strong>Kanana-1.5-2.1B</strong></td>
        <td align="center">56.30</td>
        <td align="center">45.10</td>
        <td align="center">77.46</td>
        <td align="center">52.44</td>
        <td align="center">47.00</td>
        <td align="center">55.95</td>
    </tr>
    <tr>
        <td>Kanana-Nano-2.1B</td>
        <td align="center">54.83</td>
        <td align="center">44.80</td>
        <td align="center">77.09</td>
        <td align="center">31.10</td>
        <td align="center">46.20</td>
        <td align="center">46.32</td>
    </tr>
</table>

<br>

### Instruct Model Evaluation
<table>
    <tr>
        <th>Models</th>
        <th>MT-Bench</th>
        <th>KoMT-Bench</th>
        <th>IFEval</th>
        <th>HumanEval+</th>
        <th>MBPP+</th>
        <th>GSM8K (0-shot)</th>
        <th>MATH</th>
        <th>MMLU (0-shot, CoT)</th>
        <th>KMMLU (0-shot, CoT)</th>
        <th>FunctionChatBench</th>
    </tr>
    <tr>
        <td>Kanana-1.5-2.1B*</td>
        <td align="center">7.01</td>
        <td align="center">6.54</td>
        <td align="center">68.61</td>
        <td align="center">68.90</td>
        <td align="center">65.08</td>
        <td align="center">81.43</td>
        <td align="center">60.62</td>
        <td align="center">53.87</td>
        <td align="center">32.93</td>
        <td align="center">53.70</td>
    </tr>
    <tr>
        <td>Kanana-Nano-2.1B</td>
        <td align="center">6.40</td>
        <td align="center">5.90</td>
        <td align="center">71.97</td>
        <td align="center">63.41</td>
        <td align="center">62.43</td>
        <td align="center">72.32</td>
        <td align="center">29.26</td>
        <td align="center">52.48</td>
        <td align="center">38.51</td>
        <td align="center">26.10</td>
    </tr>
</table>

> [!Note]
> \* Models released under Apache 2.0 are trained on the latest versions compared to other models.


<br>

## Contributors
- Language Model Training: Yunju Bak, Doohae Jung, Boseop Kim, Nayeon Kim, Hojin Lee, Jaesun Park, Minho Ryu
- Language Model Alignment: Jiyeon Ham, Seungjae Jung, Hyunho Kim, Hyunwoong Ko, Changmin Lee, Daniel Wontae Nam
- AI Engineering: Youmin Kim, Hyeongju Kim

<br>
 
## Citation
 
```
@misc{kananallmteam2025kananacomputeefficientbilinguallanguage,
      title={Kanana: Compute-efficient Bilingual Language Models}, 
      author={Kanana LLM Team and Yunju Bak and Hojin Lee and Minho Ryu and Jiyeon Ham and Seungjae Jung and Daniel Wontae Nam and Taegyeong Eo and Donghun Lee and Doohae Jung and Boseop Kim and Nayeon Kim and Jaesun Park and Hyunho Kim and Hyunwoong Ko and Changmin Lee and Kyoung-Woon On and Seulye Baeg and Junrae Cho and Sunghee Jung and Jieun Kang and EungGyun Kim and Eunhwa Kim and Byeongil Ko and Daniel Lee and Minchul Lee and Miok Lee and Shinbok Lee and Gaeun Seo},
      year={2025},
      eprint={2502.18934},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2502.18934}, 
}
```

<br>

## Contact
- Kanana LLM Team Technical Support: [email protected]
- Business & Partnership Contact: [email protected]