wavy-jung commited on
Commit
ba843bc
·
verified ·
1 Parent(s): 3a5d6c8

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +20 -649
README.md CHANGED
@@ -20,7 +20,7 @@ training_regime: bf16 mixed precision
20
 
21
  <p align="center">
22
  🤗 <a href="https://kko.kakao.com/kananallm">1.5 HF Models</a> &nbsp |
23
- &nbsp 📕 <a href="https://tech.kakao.com/posts/707">1.5 Blog Post</a> &nbsp |
24
  &nbsp 📜 <a href="https://arxiv.org/abs/2502.18934">Technical Report</a>
25
 
26
 
@@ -44,8 +44,7 @@ training_regime: bf16 mixed precision
44
  - [Instruct Model Evaluation](#instruct-model-evaluation)
45
  - [Long Context](#long-context)
46
  - [Processing 32K+ Length](#processing-32k-length)
47
- - [Contributors](#contributors)
48
- - [Kanana 1.0](#kanana-10)
49
  - [Citation](#citation)
50
  - [Contact](#contact)
51
 
@@ -77,7 +76,7 @@ training_regime: bf16 mixed precision
77
  <th>GSM8K</th>
78
  </tr>
79
  <tr>
80
- <td><strong>Kanana-Flag-1.5-32.5B</strong></td>
81
  <td align="center">76.76</td>
82
  <td align="center">61.90</td>
83
  <td align="center">89.18</td>
@@ -86,7 +85,7 @@ training_regime: bf16 mixed precision
86
  <td align="center">81.50</td>
87
  </tr>
88
  <tr>
89
- <td><strong>Kanana-Flag-32.5B</strong></td>
90
  <td align="center">77.68</td>
91
  <td align="center">62.10</td>
92
  <td align="center">90.47</td>
@@ -95,7 +94,7 @@ training_regime: bf16 mixed precision
95
  <td align="center">70.05</td>
96
  </tr>
97
  <tr>
98
- <td><strong>Kanana-Essence-1.5-9.8B</strong></td>
99
  <td align="center">68.27</td>
100
  <td align="center">52.78</td>
101
  <td align="center">86.34</td>
@@ -104,7 +103,7 @@ training_regime: bf16 mixed precision
104
  <td align="center">71.57</td>
105
  </tr>
106
  <tr>
107
- <td><strong>Kanana-Essence-9.8B</strong></td>
108
  <td align="center">67.61</td>
109
  <td align="center">50.57</td>
110
  <td align="center">84.97</td>
@@ -113,7 +112,7 @@ training_regime: bf16 mixed precision
113
  <td align="center">63.61</td>
114
  </tr>
115
  <tr>
116
- <td><strong>Kanana-1.5-8B</strong></td>
117
  <td align="center">64.24</td>
118
  <td align="center">48.94</td>
119
  <td align="center">82.77</td>
@@ -122,7 +121,7 @@ training_regime: bf16 mixed precision
122
  <td align="center">63.53</td>
123
  </tr>
124
  <tr>
125
- <td><strong>Kanana-8B</strong></td>
126
  <td align="center">64.22</td>
127
  <td align="center">48.30</td>
128
  <td align="center">83.41</td>
@@ -131,7 +130,7 @@ training_regime: bf16 mixed precision
131
  <td align="center">57.09</td>
132
  </tr>
133
  <tr>
134
- <td><strong>Kanana-Nano-1.5-3B</strong></td>
135
  <td align="center">59.23</td>
136
  <td align="center">47.30</td>
137
  <td align="center">78.00</td>
@@ -149,7 +148,7 @@ training_regime: bf16 mixed precision
149
  <td align="center">55.95</td>
150
  </tr>
151
  <tr>
152
- <td><strong>Kanana-Nano-2.1B</strong></td>
153
  <td align="center">54.83</td>
154
  <td align="center">44.80</td>
155
  <td align="center">77.09</td>
@@ -177,7 +176,7 @@ training_regime: bf16 mixed precision
177
  <th>FunctionChatBench</th>
178
  </tr>
179
  <tr>
180
- <td><strong>Kanana-Flag-1.5-32.5B</strong></td>
181
  <td align="center">8.13</td>
182
  <td align="center">8.12</td>
183
  <td align="center">82.70</td>
@@ -190,7 +189,7 @@ training_regime: bf16 mixed precision
190
  <td align="center">67.17</td>
191
  </tr>
192
  <tr>
193
- <td><strong>Kanana-Flag-32.5B</strong></td>
194
  <td align="center">8.33</td>
195
  <td align="center">8.03</td>
196
  <td align="center">84.59</td>
@@ -203,7 +202,7 @@ training_regime: bf16 mixed precision
203
  <td align="center">65.67</td>
204
  </tr>
205
  <tr>
206
- <td><strong>Kanana-Essence-1.5-9.8B</strong></td>
207
  <td align="center">7.88</td>
208
  <td align="center">7.35</td>
209
  <td align="center">76.34</td>
@@ -216,7 +215,7 @@ training_regime: bf16 mixed precision
216
  <td align="center">51.43</td>
217
  </tr>
218
  <tr>
219
- <td><strong>Kanana-Essence-9.8B</strong></td>
220
  <td align="center">7.81</td>
221
  <td align="center">7.65</td>
222
  <td align="center">80.20</td>
@@ -229,7 +228,7 @@ training_regime: bf16 mixed precision
229
  <td align="center">26.77</td>
230
  </tr>
231
  <tr>
232
- <td><strong>Kanana-1.5-8B*</strong></td>
233
  <td align="center">7.76</td>
234
  <td align="center">7.63</td>
235
  <td align="center">80.11</td>
@@ -242,7 +241,7 @@ training_regime: bf16 mixed precision
242
  <td align="center">58.00</td>
243
  </tr>
244
  <tr>
245
- <td><strong>Kanana-8B</strong></td>
246
  <td align="center">7.13</td>
247
  <td align="center">6.92</td>
248
  <td align="center">76.91</td>
@@ -255,7 +254,7 @@ training_regime: bf16 mixed precision
255
  <td align="center">17.37</td>
256
  </tr>
257
  <tr>
258
- <td><strong>Kanana-Nano-1.5-3B</strong></td>
259
  <td align="center">7.01</td>
260
  <td align="center">6.52</td>
261
  <td align="center">70.08</td>
@@ -268,7 +267,7 @@ training_regime: bf16 mixed precision
268
  <td align="center">55.37</td>
269
  </tr>
270
  <tr>
271
- <td><strong>Kanana-1.5-2.1B*</strong></td>
272
  <td align="center">7.01</td>
273
  <td align="center">6.54</td>
274
  <td align="center">68.61</td>
@@ -281,7 +280,7 @@ training_regime: bf16 mixed precision
281
  <td align="center">53.70</td>
282
  </tr>
283
  <tr>
284
- <td><strong>Kanana-Nano-2.1B</strong></td>
285
  <td align="center">6.40</td>
286
  <td align="center">5.90</td>
287
  <td align="center">71.97</td>
@@ -296,7 +295,7 @@ training_regime: bf16 mixed precision
296
  </table>
297
 
298
  > [!Note]
299
- > \* Models released under the Apache 2.0 license have been trained on more recent data compared to other models.
300
 
301
  <br>
302
 
@@ -344,634 +343,6 @@ Currently, the `config.json` uploaded to HuggingFace is configured for token len
344
 
345
  <br>
346
 
347
- # Kanana 1.0
348
- <details>
349
- <summary>View the details about Kanana 1.0</summary>
350
-
351
- <br>
352
-
353
- We introduce Kanana, a series of bilingual language models (developed by [Kakao](https://github.com/kakao)) that demonstrate exceeding performance in Korean and competitive performance in English. The computational cost of Kanana is significantly lower than that of state-of-the-art models of similar size. The report details the techniques employed during pre-training to achieve compute-efficient yet competitive models, including high-quality data filtering, staged pre-training, depth up-scaling, and pruning and distillation. Furthermore, the report outlines the methodologies utilized during the post-training of the Kanana models, encompassing supervised fine-tuning and preference optimization, aimed at enhancing their capability for seamless interaction with users. Lastly, the report elaborates on plausible approaches used for language model adaptation to specific scenarios, such as embedding, function calling, and Retrieval Augmented Generation (RAG). The Kanana model series spans from 2.1B to 32.5B parameters with 2.1B models (base, instruct, embedding, function call, and RAG) publicly released to promote research on Korean language models.
354
-
355
- > Neither the pre-training nor the post-training data includes Kakao user data.
356
-
357
- <p align="center">
358
- <picture>
359
- <img src="assets/performance/flops-vs-mmlu.jpg", width="700" style="margin: 40px auto;">
360
- </picture>
361
-
362
- ## Performance
363
-
364
- Below are partial report on the performance of the `Kanana` model series. Please refer to the [Technical Report](https://arxiv.org/abs/2502.18934) for the full results.
365
-
366
- ### Base Model Evaluation
367
-
368
- <table>
369
- <tr>
370
- <th>Models</th>
371
- <th>MMLU</th>
372
- <th>KMMLU</th>
373
- <th>HAERAE</th>
374
- <th>HumanEval</th>
375
- <th>MBPP</th>
376
- <th>GSM8K</th>
377
- </tr>
378
- <tr>
379
- <th colspan="8" height="30px">27b+ scale</th>
380
- </tr>
381
- <tr>
382
- <td>Kanana-Flag-32.5b</td>
383
- <td align="center">77.68</td>
384
- <td align="center">62.10</td>
385
- <td align="center"><strong>90.47</strong></td>
386
- <td align="center"><strong>51.22</strong></td>
387
- <td align="center">63.40</td>
388
- <td align="center">70.05</td>
389
- </tr>
390
- <tr>
391
- <td>Qwen2.5-32b</td>
392
- <td align="center"><strong>83.10</strong></td>
393
- <td align="center"><strong>63.15</strong></td>
394
- <td align="center">75.16</td>
395
- <td align="center">50.00</td>
396
- <td align="center">73.40</td>
397
- <td align="center"><strong>82.41</strong></td>
398
- </tr>
399
- <tr>
400
- <td>Gemma-2-27b</td>
401
- <td align="center">75.45</td>
402
- <td align="center">51.16</td>
403
- <td align="center">69.11</td>
404
- <td align="center"><strong>51.22</strong></td>
405
- <td align="center">64.60</td>
406
- <td align="center">74.37</td>
407
- </tr>
408
- <tr>
409
- <td>EXAONE-3.5-32b</td>
410
- <td align="center">72.68</td>
411
- <td align="center">46.36</td>
412
- <td align="center">82.22</td>
413
- <td align="center">-</td>
414
- <td align="center">-</td>
415
- <td align="center">-</td>
416
- </tr>
417
- <tr>
418
- <td>Aya-Expanse-32b</td>
419
- <td align="center">74.52</td>
420
- <td align="center">49.57</td>
421
- <td align="center">80.66</td>
422
- <td align="center">-</td>
423
- <td align="center">-</td>
424
- <td align="center">-</td>
425
- </tr>
426
- <tr>
427
- <th colspan="8" height="30px">7b+ scale</th>
428
- </tr>
429
- <tr>
430
- <td>Kanana-Essence-9.8b</td>
431
- <td align="center">67.61</td>
432
- <td align="center">50.57</td>
433
- <td align="center"><strong>84.98</strong></td>
434
- <td align="center">40.24</td>
435
- <td align="center">53.60</td>
436
- <td align="center">63.61</td>
437
- </tr>
438
- <tr>
439
- <td>Llama-3.1-8b</td>
440
- <td align="center">65.18</td>
441
- <td align="center">41.02</td>
442
- <td align="center">61.78</td>
443
- <td align="center">35.37</td>
444
- <td align="center">48.60</td>
445
- <td align="center">50.87</td>
446
- </tr>
447
- <tr>
448
- <td>Qwen2.5-7b</td>
449
- <td align="center"><strong>74.19</strong></td>
450
- <td align="center"><strong>51.68</strong></td>
451
- <td align="center">67.46</td>
452
- <td align="center"><strong>56.71</strong></td>
453
- <td align="center"><strong>63.20</strong></td>
454
- <td align="center"><strong>83.85</strong></td>
455
- </tr>
456
- <tr>
457
- <td>Gemma-2-9b</td>
458
- <td align="center">70.34</td>
459
- <td align="center">48.18</td>
460
- <td align="center">66.18</td>
461
- <td align="center">37.20</td>
462
- <td align="center">53.60</td>
463
- <td align="center">68.16</td>
464
- </tr>
465
- <tr>
466
- <td>EXAONE-3.5-7.8b</td>
467
- <td align="center">65.36</td>
468
- <td align="center">45.30</td>
469
- <td align="center">77.54</td>
470
- <td align="center">-</td>
471
- <td align="center">-</td>
472
- <td align="center">-</td>
473
- </tr>
474
- <tr>
475
- <td>Aya-Expanse-8b</td>
476
- <td align="center">62.52</td>
477
- <td align="center">40.11</td>
478
- <td align="center">71.95</td>
479
- <td align="center">-</td>
480
- <td align="center">-</td>
481
- <td align="center">-</td>
482
- </tr>
483
- <tr>
484
- <th colspan="8" height="30px">2b+ scale</th>
485
- </tr>
486
- <tr>
487
- <td>Kanana-Nano-2.1b</td>
488
- <td align="center">54.83</td>
489
- <td align="center">44.80</td>
490
- <td align="center"><strong>77.09</strong></td>
491
- <td align="center">31.10</td>
492
- <td align="center">46.20</td>
493
- <td align="center">46.32</td>
494
- </tr>
495
- <tr>
496
- <td>Llama-3.2-3b</td>
497
- <td align="center">56.40</td>
498
- <td align="center">35.57</td>
499
- <td align="center">47.66</td>
500
- <td align="center">25.61</td>
501
- <td align="center">39.00</td>
502
- <td align="center">27.37</td>
503
- </tr>
504
- <tr>
505
- <td>Qwen2.5-3b</td>
506
- <td align="center"><strong>65.57</strong></td>
507
- <td align="center"><strong>45.28</strong></td>
508
- <td align="center">61.32</td>
509
- <td align="center"><strong>37.80</strong></td>
510
- <td align="center"><strong>55.60</strong></td>
511
- <td align="center"><strong>69.07</strong></td>
512
- </tr>
513
- <tr>
514
- <td>Gemma-2-2b</td>
515
- <td align="center">52.89</td>
516
- <td align="center">30.67</td>
517
- <td align="center">45.55</td>
518
- <td align="center">20.12</td>
519
- <td align="center">28.20</td>
520
- <td align="center">24.72</td>
521
- </tr>
522
- <tr>
523
- <td>EXAONE-3.5-2.4b</td>
524
- <td align="center">59.27</td>
525
- <td align="center">43.58</td>
526
- <td align="center">69.65</td>
527
- <td align="center">-</td>
528
- <td align="center">-</td>
529
- <td align="center">-</td>
530
- </tr>
531
- <tr>
532
- <th colspan="8" height="30px">70b+ scale</th>
533
- </tr>
534
- <tr>
535
- <td>Llama-3.1-70b</td>
536
- <td align="center">78.93</td>
537
- <td align="center">53.00</td>
538
- <td align="center">76.35</td>
539
- <td align="center">57.32</td>
540
- <td align="center">66.60</td>
541
- <td align="center">81.73</td>
542
- </tr>
543
- <tr>
544
- <td>Qwen2.5-72b</td>
545
- <td align="center">86.12</td>
546
- <td align="center">68.57</td>
547
- <td align="center">80.84</td>
548
- <td align="center">55.49</td>
549
- <td align="center">76.40</td>
550
- <td align="center">92.04</td>
551
- </tr>
552
- </table>
553
-
554
- <br>
555
-
556
-
557
- ### Instruct Model Evaluation
558
-
559
- #### Instruction-following Benchmarks
560
- <table>
561
- <tr>
562
- <th>Models</th>
563
- <th>MT-Bench</th>
564
- <th>LogicKor</th>
565
- <th>KoMT-Bench</th>
566
- <th>WildBench</th>
567
- <th>IFEval</th>
568
- </tr>
569
- <tr>
570
- <th colspan="8" height="30px">27b+ scale</th>
571
- </tr>
572
- <tr>
573
- <td>Kanana-Flag-32.5b</td>
574
- <td align="center">8.356</td>
575
- <td align="center"><strong>9.524</strong></td>
576
- <td align="center"><strong>8.058</strong></td>
577
- <td align="center">54.14</td>
578
- <td align="center"><strong>0.856</strong></td>
579
- </tr>
580
- <tr>
581
- <td>Qwen2.5-32b</td>
582
- <td align="center">8.331</td>
583
- <td align="center">8.988</td>
584
- <td align="center">7.847</td>
585
- <td align="center">51.13</td>
586
- <td align="center">0.822</td>
587
- </tr>
588
- <tr>
589
- <td>Gemma-2-27b</td>
590
- <td align="center">8.088</td>
591
- <td align="center">8.869</td>
592
- <td align="center">7.373</td>
593
- <td align="center">46.46</td>
594
- <td align="center">0.817</td>
595
- </tr>
596
- <tr>
597
- <td>EXAONE-3.5-32b</td>
598
- <td align="center"><strong>8.375</strong></td>
599
- <td align="center">9.202</td>
600
- <td align="center">7.907</td>
601
- <td align="center"><strong>54.30</strong></td>
602
- <td align="center">0.845</td>
603
- </tr>
604
- <tr>
605
- <td>Aya-Expanse-32b</td>
606
- <td align="center">7.788</td>
607
- <td align="center">8.941</td>
608
- <td align="center">7.626</td>
609
- <td align="center">48.36</td>
610
- <td align="center">0.735</td>
611
- </tr>
612
- <tr>
613
- <th colspan="8" height="30px">7b+ scale</th>
614
- </tr>
615
- <tr>
616
- <td>Kanana-Essence-9.8b</td>
617
- <td align="center">7.769</td>
618
- <td align="center">8.964</td>
619
- <td align="center">7.706</td>
620
- <td align="center">47.27</td>
621
- <td align="center">0.799</td>
622
- </tr>
623
- <tr>
624
- <td>Llama-3.1-8b</td>
625
- <td align="center">7.500</td>
626
- <td align="center">6.512</td>
627
- <td align="center">5.336</td>
628
- <td align="center">33.20</td>
629
- <td align="center">0.772</td>
630
- </tr>
631
- <tr>
632
- <td>Qwen2.5-7b</td>
633
- <td align="center">7.625</td>
634
- <td align="center">7.952</td>
635
- <td align="center">6.808</td>
636
- <td align="center">41.31</td>
637
- <td align="center">0.760</td>
638
- </tr>
639
- <tr>
640
- <td>Gemma-2-9b</td>
641
- <td align="center">7.633</td>
642
- <td align="center">8.643</td>
643
- <td align="center">7.029</td>
644
- <td align="center">40.92</td>
645
- <td align="center">0.750</td>
646
- </tr>
647
- <tr>
648
- <td>EXAONE-3.5-7.8b</td>
649
- <td align="center"><strong>8.213</strong></td>
650
- <td align="center"><strong>9.357</strong></td>
651
- <td align="center"><strong>8.013</strong></td>
652
- <td align="center"><strong>50.98</strong></td>
653
- <td align="center"><strong>0.826</strong></td>
654
- </tr>
655
- <tr>
656
- <td>Aya-Expanse-8b</td>
657
- <td align="center">7.131</td>
658
- <td align="center">8.357</td>
659
- <td align="center">7.006</td>
660
- <td align="center">38.50</td>
661
- <td align="center">0.645</td>
662
- </tr>
663
- <tr>
664
- <th colspan="8" height="30px">2b+ scale</th>
665
- </tr>
666
- <tr>
667
- <td>Kanana-Nano-2.1b</td>
668
- <td align="center">6.400</td>
669
- <td align="center">7.964</td>
670
- <td align="center">5.857</td>
671
- <td align="center">25.41</td>
672
- <td align="center">0.720</td>
673
- </tr>
674
- <tr>
675
- <td>Llama-3.2-3b</td>
676
- <td align="center">7.050</td>
677
- <td align="center">4.452</td>
678
- <td align="center">3.967</td>
679
- <td align="center">21.91</td>
680
- <td align="center">0.767</td>
681
- </tr>
682
- <tr>
683
- <td>Qwen2.5-3b</td>
684
- <td align="center">6.969</td>
685
- <td align="center">6.488</td>
686
- <td align="center">5.274</td>
687
- <td align="center">25.76</td>
688
- <td align="center">0.355</td>
689
- </tr>
690
- <tr>
691
- <td>Gemma-2-2b</td>
692
- <td align="center">7.225</td>
693
- <td align="center">5.917</td>
694
- <td align="center">4.835</td>
695
- <td align="center">28.71</td>
696
- <td align="center">0.428</td>
697
- </tr>
698
- <tr>
699
- <td>EXAONE-3.5-2.4b</td>
700
- <td align="center"><strong>7.919</strong></td>
701
- <td align="center"><strong>8.941</strong></td>
702
- <td align="center"><strong>7.223</strong></td>
703
- <td align="center"><strong>41.68</strong></td>
704
- <td align="center"><strong>0.790</strong></td>
705
- </tr>
706
- <tr>
707
- <th colspan="8" height="30px">70b+ scale</th>
708
- </tr>
709
- <tr>
710
- <td>Llama-3.1-70b</td>
711
- <td align="center">8.275</td>
712
- <td align="center">8.250</td>
713
- <td align="center">6.970</td>
714
- <td align="center">46.50</td>
715
- <td align="center">0.875</td>
716
- </tr>
717
- <tr>
718
- <td>Qwen2.5-72b</td>
719
- <td align="center">8.619</td>
720
- <td align="center">9.214</td>
721
- <td align="center">8.281</td>
722
- <td align="center">55.25</td>
723
- <td align="center">0.861</td>
724
- </tr>
725
- </table>
726
-
727
- <br>
728
-
729
- #### General Benchmarks
730
-
731
- <table>
732
- <tr>
733
- <th>Models</th>
734
- <th>MMLU</th>
735
- <th>KMMLU</th>
736
- <th>HAE-RAE</th>
737
- <th>HumanEval+</th>
738
- <th>MBPP+</th>
739
- <th>GSM8K</th>
740
- <th>MATH</th>
741
- </tr>
742
- <tr>
743
- <th colspan="8" height="30px">27b+ scale</th>
744
- </tr>
745
- <tr>
746
- <td>Kanana-Flag-32.5b</td>
747
- <td align="center">81.08</td>
748
- <td align="center"><strong>64.19</strong></td>
749
- <td align="center"><strong>68.18</strong></td>
750
- <td align="center">77.44</td>
751
- <td align="center">69.84</td>
752
- <td align="center">90.83</td>
753
- <td align="center">57.82</td>
754
- </tr>
755
- <tr>
756
- <td>Qwen2.5-32b</td>
757
- <td align="center"><strong>84.40</strong></td>
758
- <td align="center">59.37</td>
759
- <td align="center">48.30</td>
760
- <td align="center"><strong>82.32</strong></td>
761
- <td align="center"><strong>71.96</strong></td>
762
- <td align="center"><strong>95.30</strong></td>
763
- <td align="center"><strong>81.90</strong></td>
764
- </tr>
765
- <tr>
766
- <td>Gemma-2-27b</td>
767
- <td align="center">78.01</td>
768
- <td align="center">49.98</td>
769
- <td align="center">46.02</td>
770
- <td align="center">70.12</td>
771
- <td align="center">70.90</td>
772
- <td align="center">91.05</td>
773
- <td align="center">53.80</td>
774
- </tr>
775
- <tr>
776
- <td>EXAONE-3.5-32b</td>
777
- <td align="center">78.30</td>
778
- <td align="center">55.44</td>
779
- <td align="center">52.27</td>
780
- <td align="center">78.66</td>
781
- <td align="center">70.90</td>
782
- <td align="center">93.56</td>
783
- <td align="center">76.80</td>
784
- </tr>
785
- <tr>
786
- <td>Aya-Expanse-32b</td>
787
- <td align="center">74.49</td>
788
- <td align="center">42.35</td>
789
- <td align="center">51.14</td>
790
- <td align="center">64.63</td>
791
- <td align="center">65.61</td>
792
- <td align="center">75.06</td>
793
- <td align="center">42.82</td>
794
- </tr>
795
- <tr>
796
- <th colspan="8" height="30px">7b+ scale</th>
797
- </tr>
798
- <tr>
799
- <td>Kanana-Essence-9.8b</td>
800
- <td align="center">70.64</td>
801
- <td align="center">50.76</td>
802
- <td align="center"><strong>47.16</strong></td>
803
- <td align="center">72.56</td>
804
- <td align="center">69.05</td>
805
- <td align="center">84.91</td>
806
- <td align="center">42.24</td>
807
- </tr>
808
- <tr>
809
- <td>Llama-3.1-8b</td>
810
- <td align="center">71.18</td>
811
- <td align="center">39.24</td>
812
- <td align="center">40.91</td>
813
- <td align="center">60.98</td>
814
- <td align="center">57.67</td>
815
- <td align="center">82.71</td>
816
- <td align="center">49.86</td>
817
- </tr>
818
- <tr>
819
- <td>Qwen2.5-7b</td>
820
- <td align="center"><strong>77.23</strong></td>
821
- <td align="center">46.87</td>
822
- <td align="center">37.50</td>
823
- <td align="center">73.78</td>
824
- <td align="center"><strong>70.63</strong></td>
825
- <td align="center"><strong>91.58</strong></td>
826
- <td align="center"><strong>75.22</strong></td>
827
- </tr>
828
- <tr>
829
- <td>Gemma-2-9b</td>
830
- <td align="center">73.47</td>
831
- <td align="center">44.47</td>
832
- <td align="center">39.77</td>
833
- <td align="center">59.76</td>
834
- <td align="center">64.55</td>
835
- <td align="center">87.72</td>
836
- <td align="center">48.10</td>
837
- </tr>
838
- <tr>
839
- <td>EXAONE-3.5-7.8b</td>
840
- <td align="center">72.62</td>
841
- <td align="center"><strong>52.09</strong></td>
842
- <td align="center">46.02</td>
843
- <td align="center"><strong>79.27</strong></td>
844
- <td align="center">66.67</td>
845
- <td align="center">89.99</td>
846
- <td align="center">73.50</td>
847
- </tr>
848
- <tr>
849
- <td>Aya-Expanse-8b</td>
850
- <td align="center">61.23</td>
851
- <td align="center">35.78</td>
852
- <td align="center">39.20</td>
853
- <td align="center">42.68</td>
854
- <td align="center">56.88</td>
855
- <td align="center">78.85</td>
856
- <td align="center">30.80</td>
857
- </tr>
858
- <tr>
859
- <th colspan="8" height="30px">2b+ scale</th>
860
- </tr>
861
- <tr>
862
- <td>Kanana-Nano-2.1b</td>
863
- <td align="center">52.48</td>
864
- <td align="center"><strong>38.51</strong></td>
865
- <td align="center"><strong>33.52</strong></td>
866
- <td align="center">63.41</td>
867
- <td align="center">62.43</td>
868
- <td align="center">72.32</td>
869
- <td align="center">29.26</td>
870
- </tr>
871
- <tr>
872
- <td>Llama-3.2-3b</td>
873
- <td align="center">56.09</td>
874
- <td align="center">3.07</td>
875
- <td align="center">17.05</td>
876
- <td align="center">56.71</td>
877
- <td align="center">50.26</td>
878
- <td align="center">66.57</td>
879
- <td align="center">38.18</td>
880
- </tr>
881
- <tr>
882
- <td>Qwen2.5-3b</td>
883
- <td align="center"><strong>69.18</strong></td>
884
- <td align="center">38.33</td>
885
- <td align="center">32.39</td>
886
- <td align="center">67.68</td>
887
- <td align="center"><strong>64.02</strong></td>
888
- <td align="center"><strong>84.00</strong></td>
889
- <td align="center"><strong>65.72</strong></td>
890
- </tr>
891
- <tr>
892
- <td>Gemma-2-2b</td>
893
- <td align="center">57.69</td>
894
- <td align="center">6.99</td>
895
- <td align="center">7.95</td>
896
- <td align="center">35.37</td>
897
- <td align="center">45.24</td>
898
- <td align="center">49.81</td>
899
- <td align="center">21.68</td>
900
- </tr>
901
- <tr>
902
- <td>EXAONE-3.5-2.4b</td>
903
- <td align="center">63.19</td>
904
- <td align="center">14.27</td>
905
- <td align="center">14.20</td>
906
- <td align="center"><strong>70.73</strong></td>
907
- <td align="center">59.79</td>
908
- <td align="center">83.78</td>
909
- <td align="center">64.04</td>
910
- </tr>
911
- <tr>
912
- <th colspan="8" height="30px">70b+ scale</th>
913
- </tr>
914
- <tr>
915
- <td>Llama-3.1-70b</td>
916
- <td align="center">83.48</td>
917
- <td align="center">39.08</td>
918
- <td align="center">53.41</td>
919
- <td align="center">75.61</td>
920
- <td align="center">66.40</td>
921
- <td align="center">91.66</td>
922
- <td align="center">63.98</td>
923
- </tr>
924
- <tr>
925
- <td>Qwen2.5-72b</td>
926
- <td align="center">87.14</td>
927
- <td align="center">65.78</td>
928
- <td align="center">60.80</td>
929
- <td align="center">81.10</td>
930
- <td align="center">75.66</td>
931
- <td align="center">95.45</td>
932
- <td align="center">82.60</td>
933
- </tr>
934
- </table>
935
-
936
- <br>
937
-
938
- ### Embedding Model Performance
939
- <table>
940
- <tr>
941
- <td align="center">Backbone</td>
942
- <td align="center">Kanana-Nano-2.1b</td>
943
- <td align="center">Llama-3.2-3b</td>
944
- <td align="center">Qwen2.5-3b</td>
945
- <td align="center">Llama-3.2-1b</td>
946
- <td align="center">Qwen-2.5-1.5b</td>
947
- </tr>
948
- <tr>
949
- <td align="center">English</td>
950
- <td align="center">51.56</td>
951
- <td align="center">53.28</td>
952
- <td align="center"><strong>54.00</strong></td>
953
- <td align="center">48.77</td>
954
- <td align="center">50.60</td>
955
- </tr>
956
- <tr>
957
- <td align="center">Korean</td>
958
- <td align="center"><strong>65.00</strong></td>
959
- <td align="center">59.43</td>
960
- <td align="center">62.10</td>
961
- <td align="center">54.68</td>
962
- <td align="center">54.60</td>
963
- </tr>
964
- <tr>
965
- <td align="center">Avg.</td>
966
- <td align="center"><strong>58.28</strong></td>
967
- <td align="center">56.35</td>
968
- <td align="center">58.05</td>
969
- <td align="center">51.73</td>
970
- <td align="center">52.60</td>
971
- </tr>
972
- </table>
973
-
974
- <br>
975
 
976
  ## Contributors
977
 
 
20
 
21
  <p align="center">
22
  🤗 <a href="https://kko.kakao.com/kananallm">1.5 HF Models</a> &nbsp |
23
+ &nbsp 📕 <a href="https://tech.kakao.com/posts/707">1.5 Blog</a> &nbsp |
24
  &nbsp 📜 <a href="https://arxiv.org/abs/2502.18934">Technical Report</a>
25
 
26
 
 
44
  - [Instruct Model Evaluation](#instruct-model-evaluation)
45
  - [Long Context](#long-context)
46
  - [Processing 32K+ Length](#processing-32k-length)
47
+ - [Contributors](#contributors)
 
48
  - [Citation](#citation)
49
  - [Contact](#contact)
50
 
 
76
  <th>GSM8K</th>
77
  </tr>
78
  <tr>
79
+ <td>Kanana-Flag-1.5-32.5B</td>
80
  <td align="center">76.76</td>
81
  <td align="center">61.90</td>
82
  <td align="center">89.18</td>
 
85
  <td align="center">81.50</td>
86
  </tr>
87
  <tr>
88
+ <td>Kanana-Flag-32.5B</td>
89
  <td align="center">77.68</td>
90
  <td align="center">62.10</td>
91
  <td align="center">90.47</td>
 
94
  <td align="center">70.05</td>
95
  </tr>
96
  <tr>
97
+ <td>Kanana-Essence-1.5-9.8B</td>
98
  <td align="center">68.27</td>
99
  <td align="center">52.78</td>
100
  <td align="center">86.34</td>
 
103
  <td align="center">71.57</td>
104
  </tr>
105
  <tr>
106
+ <td>Kanana-Essence-9.8B</td>
107
  <td align="center">67.61</td>
108
  <td align="center">50.57</td>
109
  <td align="center">84.97</td>
 
112
  <td align="center">63.61</td>
113
  </tr>
114
  <tr>
115
+ <td>Kanana-1.5-8B</td>
116
  <td align="center">64.24</td>
117
  <td align="center">48.94</td>
118
  <td align="center">82.77</td>
 
121
  <td align="center">63.53</td>
122
  </tr>
123
  <tr>
124
+ <td>Kanana-8B</td>
125
  <td align="center">64.22</td>
126
  <td align="center">48.30</td>
127
  <td align="center">83.41</td>
 
130
  <td align="center">57.09</td>
131
  </tr>
132
  <tr>
133
+ <td>Kanana-Nano-1.5-3B</td>
134
  <td align="center">59.23</td>
135
  <td align="center">47.30</td>
136
  <td align="center">78.00</td>
 
148
  <td align="center">55.95</td>
149
  </tr>
150
  <tr>
151
+ <td>Kanana-Nano-2.1B</td>
152
  <td align="center">54.83</td>
153
  <td align="center">44.80</td>
154
  <td align="center">77.09</td>
 
176
  <th>FunctionChatBench</th>
177
  </tr>
178
  <tr>
179
+ <td>Kanana-Flag-1.5-32.5B</td>
180
  <td align="center">8.13</td>
181
  <td align="center">8.12</td>
182
  <td align="center">82.70</td>
 
189
  <td align="center">67.17</td>
190
  </tr>
191
  <tr>
192
+ <td>Kanana-Flag-32.5B</td>
193
  <td align="center">8.33</td>
194
  <td align="center">8.03</td>
195
  <td align="center">84.59</td>
 
202
  <td align="center">65.67</td>
203
  </tr>
204
  <tr>
205
+ <td>Kanana-Essence-1.5-9.8B</td>
206
  <td align="center">7.88</td>
207
  <td align="center">7.35</td>
208
  <td align="center">76.34</td>
 
215
  <td align="center">51.43</td>
216
  </tr>
217
  <tr>
218
+ <td>Kanana-Essence-9.8B</td>
219
  <td align="center">7.81</td>
220
  <td align="center">7.65</td>
221
  <td align="center">80.20</td>
 
228
  <td align="center">26.77</td>
229
  </tr>
230
  <tr>
231
+ <td>Kanana-1.5-8B</td>
232
  <td align="center">7.76</td>
233
  <td align="center">7.63</td>
234
  <td align="center">80.11</td>
 
241
  <td align="center">58.00</td>
242
  </tr>
243
  <tr>
244
+ <td>Kanana-8B</td>
245
  <td align="center">7.13</td>
246
  <td align="center">6.92</td>
247
  <td align="center">76.91</td>
 
254
  <td align="center">17.37</td>
255
  </tr>
256
  <tr>
257
+ <td>Kanana-Nano-1.5-3B</td>
258
  <td align="center">7.01</td>
259
  <td align="center">6.52</td>
260
  <td align="center">70.08</td>
 
267
  <td align="center">55.37</td>
268
  </tr>
269
  <tr>
270
+ <td>Kanana-1.5-2.1B</td>
271
  <td align="center">7.01</td>
272
  <td align="center">6.54</td>
273
  <td align="center">68.61</td>
 
280
  <td align="center">53.70</td>
281
  </tr>
282
  <tr>
283
+ <td>Kanana-Nano-2.1B</td>
284
  <td align="center">6.40</td>
285
  <td align="center">5.90</td>
286
  <td align="center">71.97</td>
 
295
  </table>
296
 
297
  > [!Note]
298
+ > \* Models released under Apache 2.0 are trained on the latest versions compared to other models.
299
 
300
  <br>
301
 
 
343
 
344
  <br>
345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
346
 
347
  ## Contributors
348