Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- ko
|
5 |
+
library_name: transformers
|
6 |
+
license: unlicense
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
model_id: kakaocorp/kanana-1.5-2.1b-base
|
9 |
+
repo: kakaocorp/kanana-1.5-2.1b-base
|
10 |
+
developers: KananaAlpha LLM
|
11 |
+
training_regime: bf16 mixed precision
|
12 |
+
results: '| mmlu (5-shots) [acc] | kmmlu-direct (5-shots) [exact_match] | haerae (5-shots) [acc_norm] | gsm8k (5-shots) [exact_match_strict] | humaneval (0-shots) [pass@1] | mbpp (3-shots) [pass@1] |
|
13 |
+
|------------------------|----------------------------------------|-------------------------------|----------------------------------------|--------------------------------|---------------------------|
|
14 |
+
| 56.26 | 45.25 | 76.72 | 53.60 | 53.66 | 53.66 |'
|
15 |
+
model_summary: Kanana-1.5-2.1b-base is an auto-regressive language model that
|
16 |
+
uses an optimized transformer architecture. Kanana-1.5-2.1b-base uses a tokenizer
|
17 |
+
with a vocabulary of 128K tokens, and supports sequence length of 32k.
|
18 |
+
Grouped-Query Attention (GQA) is used for all models to improve inference efficiency.
|
19 |
+
training_data: Kanana-1.5-2.1b-base was continuously pretrained from kakaocorp/kanana-essence-2.1b-dus-v1.0.0. Neither the pretraining nor the fine-tuning datasets include Kakao user data.
|
20 |
+
model-index:
|
21 |
+
- name: kanana-1.5-2.1b-base
|
22 |
+
results:
|
23 |
+
- task:
|
24 |
+
type: multiple_choice
|
25 |
+
name: mmlu
|
26 |
+
dataset:
|
27 |
+
name: mmlu (5-shots)
|
28 |
+
type: hails/mmlu_no_train
|
29 |
+
metrics:
|
30 |
+
- type: acc
|
31 |
+
value: 56.26
|
32 |
+
name: acc
|
33 |
+
- task:
|
34 |
+
type: generate_until
|
35 |
+
name: kmmlu
|
36 |
+
dataset:
|
37 |
+
name: kmmlu-direct (5-shots)
|
38 |
+
type: HAERAE-HUB/KMMLU
|
39 |
+
metrics:
|
40 |
+
- type: exact_match
|
41 |
+
value: 45.25
|
42 |
+
name: exact_match
|
43 |
+
- task:
|
44 |
+
type: multiple_choice
|
45 |
+
name: haerae
|
46 |
+
dataset:
|
47 |
+
name: haerae (5-shots)
|
48 |
+
type: HAERAE-HUB/HAE_RAE_BENCH
|
49 |
+
metrics:
|
50 |
+
- type: acc_norm
|
51 |
+
value: 76.72
|
52 |
+
name: acc_norm
|
53 |
+
- task:
|
54 |
+
type: generate_until
|
55 |
+
name: gsm8k
|
56 |
+
dataset:
|
57 |
+
name: gsm8k (5-shots)
|
58 |
+
type: openai/gsm8k
|
59 |
+
metrics:
|
60 |
+
- type: exact_match
|
61 |
+
value: 53.60
|
62 |
+
name: exact_match_strict
|
63 |
+
- task:
|
64 |
+
type: generate_until
|
65 |
+
name: humaneval
|
66 |
+
dataset:
|
67 |
+
name: humaneval (0-shots)
|
68 |
+
type: openai/openai_humaneval
|
69 |
+
metrics:
|
70 |
+
- type: pass@1
|
71 |
+
value: 53.66
|
72 |
+
name: pass@1
|
73 |
+
- task:
|
74 |
+
type: generate_until
|
75 |
+
name: mbpp
|
76 |
+
dataset:
|
77 |
+
name: mbpp (3-shots)
|
78 |
+
type: google-research-datasets/mbpp
|
79 |
+
metrics:
|
80 |
+
- type: pass@1
|
81 |
+
value: 53.66
|
82 |
+
name: pass@1
|
83 |
+
---
|
84 |
+
# Model Card for kakaocorp/kanana-1.5-2.1b-base
|
85 |
+
|
86 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
87 |
+
|
88 |
+
Kanana-1.5-2.1b-base is an auto-regressive language model that uses an optimized transformer architecture. Kanana-1.5-2.1b-base uses a tokenizer with a vocabulary of 128K tokens, and supports sequence length of 32k. Grouped-Query Attention (GQA) is used for all models to improve inference efficiency.
|
89 |
+
|
90 |
+
## Model Details
|
91 |
+
|
92 |
+
### Model Description
|
93 |
+
|
94 |
+
<!-- Provide a longer summary of what this model is. -->
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
- **Developed by:** KananaAlpha LLM
|
99 |
+
- **Language(s) (NLP):** ['en', 'ko']
|
100 |
+
- **License:** unlicense
|
101 |
+
|
102 |
+
## Training Details
|
103 |
+
|
104 |
+
### Training Data
|
105 |
+
|
106 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
107 |
+
|
108 |
+
Kanana-1.5-2.1b-base was continuously pretrained from kakaocorp/kanana-essence-2.1b-v1.0.0. Neither the pretraining nor the fine-tuning datasets include Kakao user data.
|
109 |
+
|
110 |
+
### Training Procedure
|
111 |
+
|
112 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
113 |
+
|
114 |
+
#### Training Hyperparameters
|
115 |
+
|
116 |
+
- **Training regime:** bf16 mixed precision <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
117 |
+
|
118 |
+
## Evaluation
|
119 |
+
|
120 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
121 |
+
|
122 |
+
### Results for General Tasks
|
123 |
+
|
124 |
+
| mmlu (5-shots) [acc] | kmmlu-direct (5-shots) [exact_match] | haerae (5-shots) [acc_norm] | gsm8k (5-shots) [exact_match_strict] | humaneval (0-shots) [pass@1] | mbpp (3-shots) [pass@1] |
|
125 |
+
|------------------------|----------------------------------------|-------------------------------|----------------------------------------|--------------------------------|---------------------------|
|
126 |
+
| 56.26 | 45.25 | 76.72 | 53.60 | 53.66 | 53.66 |
|
127 |
+
|
128 |
+
### Results for Long-Context Tasks
|
129 |
+
| context length | ruler_niah_mk_2 [ruler_recall] | ruler_niah_mk_3 [ruler_recall] | ruler_niah_mv [ruler_recall] | json_kv [substring_exact_match] | niah [avg] | avg |
|
130 |
+
|---------------|--------------------------------|--------------------------------|------------------------------|----------------------------------|------------|-------|
|
131 |
+
| 8192 | 100.00 | 99.00 | 97.00 | 100.00 | 98.92 | 98.98 |
|
132 |
+
| 16384 | 99.00 | 97.00 | 95.75 | 100.00 | 99.21 | 98.19 |
|
133 |
+
| 32768 | 95.00 | 95.00 | 86.00 | 100.00 | 99.07 | 95.01 |
|