metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:21210762
- loss:MSELoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: >-
A Message Authentication Code is a protection against data being altered
in transit by an attacker who has the ability to read the data in
real-time.
sentences:
- 彼との仕事はめちゃくちゃクールだった。
- もう何十台も通り過ぎた。
- メッセージ認証コードは、データをリアルタイムで読み取る能力を持つ攻撃者による転送中のデータの改ざんから保護します。
- source_sentence: >-
“We have the best entertainers from New York, Hollywood and Las Vegas
perform here.”
sentences:
- 「ニューヨークやハリウッド、ラスベガスからの素晴らしい芸人たちがここでショーをするんです」
- 現在は様々なサプリが販売されています。
- ◆ トルコの友人たちへの手紙
- source_sentence: A correction was made on November 24th.
sentences:
- 私たちが抱え込んでいたトラウマ。
- 11月24日に訂正いたしました。
- なぜ憲法を学ぶのでしょうか。
- source_sentence: We need more teachers like him nowadays.
sentences:
- そういうことが、いまの教員には、もっと必要でしょうね。
- >-
This may include, but is not limited to, investigating and intercepting
payments into and out of your account(s) (particularly in the case of
international transfers of funds) and investigating the source of or
intended recipient of funds.
⇒ 少なくとも(違法行為が疑われる)名義人の口座の出入金(特に国際的な送金)について調査し、かつそれらを差し止めたうえで、入金についてはその送金元、出金についてはその受取り人を調査します。
- 私がそこで授業をしているのである。
- source_sentence: >-
Nano-structure A nanostructure is an intermediate size between molecular
and microscopic (micrometer-sized) structures.
sentences:
- 魔術のお話に戻りましょう。
- 引き続きワシントンより。
- ナノ構造は、分子構造と微視的(マイクロメートルサイズ)構造との間の中間サイズの対象である。
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: JSTS
type: JSTS
metrics:
- type: pearson_cosine
value: 0.823463331969533
name: Pearson Cosine
- type: spearman_cosine
value: 0.7815308480362135
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: stsb multi mt en
type: stsb_multi_mt-en
metrics:
- type: pearson_cosine
value: 0.8362828278686943
name: Pearson Cosine
- type: spearman_cosine
value: 0.8564038929573722
name: Spearman Cosine
SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Nano-structure A nanostructure is an intermediate size between molecular and microscopic (micrometer-sized) structures.',
'ナノ構造は、分子構造と微視的(マイクロメートルサイズ)構造との間の中間サイズの対象である。',
'魔術のお話に戻りましょう。',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
JSTS
andstsb_multi_mt-en
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | JSTS | stsb_multi_mt-en |
---|---|---|
pearson_cosine | 0.8235 | 0.8363 |
spearman_cosine | 0.7815 | 0.8564 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 21,210,762 training samples
- Columns:
english
,non_english
, andlabel
- Approximate statistics based on the first 1000 samples:
english non_english label type string string list details - min: 4 tokens
- mean: 16.46 tokens
- max: 92 tokens
- min: 4 tokens
- mean: 21.99 tokens
- max: 128 tokens
- size: 384 elements
- Samples:
english non_english label We live the life of the project.
プロジェクトの生命を左右する。
[0.009600206278264523, 0.058811139315366745, 0.023707984015345573, -0.021880649030208588, 0.068634033203125, ...]
Hold on here, Mr. Budget Director.
ここいろ編集長
[-0.04940887540578842, -0.013437069952487946, 0.024199623614549637, -0.02371774986386299, 0.06858911365270615, ...]
So yes, biology has all the attributes of a transportation genius today.
そうです 生物は 今日話した最高の交通にある特性を 全て持ち合わせています
[0.031787291169166565, 0.011292539536952972, 0.03621761128306389, -0.04237872734665871, -0.030112963169813156, ...]
- Loss:
MSELoss
Evaluation Dataset
Unnamed Dataset
- Size: 214,251 evaluation samples
- Columns:
english
,non_english
, andlabel
- Approximate statistics based on the first 1000 samples:
english non_english label type string string list details - min: 4 tokens
- mean: 16.24 tokens
- max: 88 tokens
- min: 4 tokens
- mean: 22.18 tokens
- max: 128 tokens
- size: 384 elements
- Samples:
english non_english label Then the next step was the social bookmarking.
次のカテゴリはソーシャルブックマークです。
[-0.040418993681669235, 0.019537044689059258, -0.014964035712182522, -0.06385297328233719, 0.00023657231940887868, ...]
Ooh! Scary word! Ahh!
なんと 恐ろしい言葉!
[0.023886308073997498, -0.04336044192314148, -0.057255394756793976, 0.05142980441451073, 0.06282227486371994, ...]
Usually Ebates offers 1.
通常提示スプレッド*1
[0.00018616259330883622, -0.01999301090836525, 0.049356017261743546, 0.002617522142827511, -0.0540102981030941, ...]
- Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 512per_device_eval_batch_size
: 512gradient_accumulation_steps
: 2learning_rate
: 0.0003num_train_epochs
: 8warmup_ratio
: 0.15bf16
: Truedataloader_num_workers
: 8
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 512per_device_eval_batch_size
: 512per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.0003weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 8max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.15warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 8dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | JSTS_spearman_cosine | stsb_multi_mt-en_spearman_cosine |
---|---|---|---|---|---|
0.0241 | 500 | 0.0064 | - | - | - |
0.0483 | 1000 | 0.0045 | - | - | - |
0.0724 | 1500 | 0.0038 | - | - | - |
0.0966 | 2000 | 0.0035 | 0.0016 | 0.3008 | 0.2821 |
0.1207 | 2500 | 0.0033 | - | - | - |
0.1448 | 3000 | 0.0031 | - | - | - |
0.1690 | 3500 | 0.0029 | - | - | - |
0.1931 | 4000 | 0.0028 | 0.0013 | 0.4989 | 0.4681 |
0.2172 | 4500 | 0.0026 | - | - | - |
0.2414 | 5000 | 0.0025 | - | - | - |
0.2655 | 5500 | 0.0023 | - | - | - |
0.2897 | 6000 | 0.0022 | 0.0010 | 0.6554 | 0.6567 |
0.3138 | 6500 | 0.0021 | - | - | - |
0.3379 | 7000 | 0.002 | - | - | - |
0.3621 | 7500 | 0.0019 | - | - | - |
0.3862 | 8000 | 0.0018 | 0.0008 | 0.7038 | 0.7328 |
0.4104 | 8500 | 0.0017 | - | - | - |
0.4345 | 9000 | 0.0017 | - | - | - |
0.4586 | 9500 | 0.0016 | - | - | - |
0.4828 | 10000 | 0.0016 | 0.0007 | 0.7420 | 0.7662 |
0.5069 | 10500 | 0.0015 | - | - | - |
0.5310 | 11000 | 0.0015 | - | - | - |
0.5552 | 11500 | 0.0014 | - | - | - |
0.5793 | 12000 | 0.0014 | 0.0006 | 0.7559 | 0.7929 |
0.6035 | 12500 | 0.0014 | - | - | - |
0.6276 | 13000 | 0.0014 | - | - | - |
0.6517 | 13500 | 0.0013 | - | - | - |
0.6759 | 14000 | 0.0013 | 0.0006 | 0.7625 | 0.8056 |
0.7000 | 14500 | 0.0013 | - | - | - |
0.7241 | 15000 | 0.0013 | - | - | - |
0.7483 | 15500 | 0.0012 | - | - | - |
0.7724 | 16000 | 0.0012 | 0.0006 | 0.7652 | 0.8150 |
0.7966 | 16500 | 0.0012 | - | - | - |
0.8207 | 17000 | 0.0012 | - | - | - |
0.8448 | 17500 | 0.0012 | - | - | - |
0.8690 | 18000 | 0.0012 | 0.0005 | 0.7679 | 0.8209 |
0.8931 | 18500 | 0.0012 | - | - | - |
0.9173 | 19000 | 0.0011 | - | - | - |
0.9414 | 19500 | 0.0011 | - | - | - |
0.9655 | 20000 | 0.0011 | 0.0005 | 0.7727 | 0.8269 |
0.9897 | 20500 | 0.0011 | - | - | - |
1.0138 | 21000 | 0.0011 | - | - | - |
1.0379 | 21500 | 0.0011 | - | - | - |
1.0621 | 22000 | 0.0011 | 0.0005 | 0.7682 | 0.8319 |
1.0862 | 22500 | 0.0011 | - | - | - |
1.1104 | 23000 | 0.0011 | - | - | - |
1.1345 | 23500 | 0.0011 | - | - | - |
1.1586 | 24000 | 0.0011 | 0.0005 | 0.7718 | 0.8372 |
1.1828 | 24500 | 0.0011 | - | - | - |
1.2069 | 25000 | 0.0011 | - | - | - |
1.2311 | 25500 | 0.0011 | - | - | - |
1.2552 | 26000 | 0.001 | 0.0005 | 0.7751 | 0.8408 |
1.2793 | 26500 | 0.001 | - | - | - |
1.3035 | 27000 | 0.001 | - | - | - |
1.3276 | 27500 | 0.001 | - | - | - |
1.3517 | 28000 | 0.001 | 0.0005 | 0.7703 | 0.8437 |
1.3759 | 28500 | 0.001 | - | - | - |
1.4000 | 29000 | 0.001 | - | - | - |
1.4242 | 29500 | 0.001 | - | - | - |
1.4483 | 30000 | 0.001 | 0.0005 | 0.7730 | 0.8439 |
1.4724 | 30500 | 0.001 | - | - | - |
1.4966 | 31000 | 0.001 | - | - | - |
1.5207 | 31500 | 0.001 | - | - | - |
1.5448 | 32000 | 0.001 | 0.0005 | 0.7719 | 0.8456 |
1.5690 | 32500 | 0.001 | - | - | - |
1.5931 | 33000 | 0.001 | - | - | - |
1.6173 | 33500 | 0.001 | - | - | - |
1.6414 | 34000 | 0.001 | 0.0005 | 0.7719 | 0.8449 |
1.6655 | 34500 | 0.001 | - | - | - |
1.6897 | 35000 | 0.001 | - | - | - |
1.7138 | 35500 | 0.001 | - | - | - |
1.7380 | 36000 | 0.001 | 0.0004 | 0.7717 | 0.8455 |
1.7621 | 36500 | 0.001 | - | - | - |
1.7862 | 37000 | 0.001 | - | - | - |
1.8104 | 37500 | 0.001 | - | - | - |
1.8345 | 38000 | 0.001 | 0.0004 | 0.7714 | 0.8488 |
1.8586 | 38500 | 0.001 | - | - | - |
1.8828 | 39000 | 0.001 | - | - | - |
1.9069 | 39500 | 0.001 | - | - | - |
1.9311 | 40000 | 0.001 | 0.0004 | 0.7753 | 0.8474 |
1.9552 | 40500 | 0.001 | - | - | - |
1.9793 | 41000 | 0.001 | - | - | - |
2.0035 | 41500 | 0.001 | - | - | - |
2.0276 | 42000 | 0.001 | 0.0004 | 0.7708 | 0.8479 |
2.0518 | 42500 | 0.001 | - | - | - |
2.0759 | 43000 | 0.001 | - | - | - |
2.1000 | 43500 | 0.001 | - | - | - |
2.1242 | 44000 | 0.001 | 0.0004 | 0.7703 | 0.8505 |
2.1483 | 44500 | 0.001 | - | - | - |
2.1724 | 45000 | 0.0009 | - | - | - |
2.1966 | 45500 | 0.0009 | - | - | - |
2.2207 | 46000 | 0.0009 | 0.0004 | 0.7752 | 0.8525 |
2.2449 | 46500 | 0.0009 | - | - | - |
2.2690 | 47000 | 0.0009 | - | - | - |
2.2931 | 47500 | 0.0009 | - | - | - |
2.3173 | 48000 | 0.0009 | 0.0004 | 0.7734 | 0.8518 |
2.3414 | 48500 | 0.0009 | - | - | - |
2.3655 | 49000 | 0.0009 | - | - | - |
2.3897 | 49500 | 0.0009 | - | - | - |
2.4138 | 50000 | 0.0009 | 0.0004 | 0.7725 | 0.8512 |
2.4380 | 50500 | 0.0009 | - | - | - |
2.4621 | 51000 | 0.0009 | - | - | - |
2.4862 | 51500 | 0.0009 | - | - | - |
2.5104 | 52000 | 0.0009 | 0.0004 | 0.7709 | 0.8535 |
2.5345 | 52500 | 0.0009 | - | - | - |
2.5587 | 53000 | 0.0009 | - | - | - |
2.5828 | 53500 | 0.0009 | - | - | - |
2.6069 | 54000 | 0.0009 | 0.0004 | 0.7751 | 0.8519 |
2.6311 | 54500 | 0.0009 | - | - | - |
2.6552 | 55000 | 0.0009 | - | - | - |
2.6793 | 55500 | 0.0009 | - | - | - |
2.7035 | 56000 | 0.0009 | 0.0004 | 0.7770 | 0.8500 |
2.7276 | 56500 | 0.0009 | - | - | - |
2.7518 | 57000 | 0.0009 | - | - | - |
2.7759 | 57500 | 0.0009 | - | - | - |
2.8000 | 58000 | 0.0009 | 0.0004 | 0.7756 | 0.8514 |
2.8242 | 58500 | 0.0009 | - | - | - |
2.8483 | 59000 | 0.0009 | - | - | - |
2.8725 | 59500 | 0.0009 | - | - | - |
2.8966 | 60000 | 0.0009 | 0.0004 | 0.7791 | 0.8541 |
2.9207 | 60500 | 0.0009 | - | - | - |
2.9449 | 61000 | 0.0009 | - | - | - |
2.9690 | 61500 | 0.0009 | - | - | - |
2.9931 | 62000 | 0.0009 | 0.0004 | 0.7759 | 0.8539 |
3.0173 | 62500 | 0.0009 | - | - | - |
3.0414 | 63000 | 0.0009 | - | - | - |
3.0656 | 63500 | 0.0009 | - | - | - |
3.0897 | 64000 | 0.0009 | 0.0004 | 0.7770 | 0.8526 |
3.1138 | 64500 | 0.0009 | - | - | - |
3.1380 | 65000 | 0.0009 | - | - | - |
3.1621 | 65500 | 0.0009 | - | - | - |
3.1863 | 66000 | 0.0009 | 0.0004 | 0.7762 | 0.8531 |
3.2104 | 66500 | 0.0009 | - | - | - |
3.2345 | 67000 | 0.0009 | - | - | - |
3.2587 | 67500 | 0.0009 | - | - | - |
3.2828 | 68000 | 0.0009 | 0.0004 | 0.7771 | 0.8515 |
3.3069 | 68500 | 0.0009 | - | - | - |
3.3311 | 69000 | 0.0009 | - | - | - |
3.3552 | 69500 | 0.0009 | - | - | - |
3.3794 | 70000 | 0.0009 | 0.0004 | 0.7757 | 0.8530 |
3.4035 | 70500 | 0.0009 | - | - | - |
3.4276 | 71000 | 0.0009 | - | - | - |
3.4518 | 71500 | 0.0009 | - | - | - |
3.4759 | 72000 | 0.0009 | 0.0004 | 0.7776 | 0.8532 |
3.5000 | 72500 | 0.0009 | - | - | - |
3.5242 | 73000 | 0.0009 | - | - | - |
3.5483 | 73500 | 0.0009 | - | - | - |
3.5725 | 74000 | 0.0009 | 0.0004 | 0.7776 | 0.8542 |
3.5966 | 74500 | 0.0009 | - | - | - |
3.6207 | 75000 | 0.0009 | - | - | - |
3.6449 | 75500 | 0.0009 | - | - | - |
3.6690 | 76000 | 0.0009 | 0.0004 | 0.7803 | 0.8539 |
3.6932 | 76500 | 0.0009 | - | - | - |
3.7173 | 77000 | 0.0009 | - | - | - |
3.7414 | 77500 | 0.0009 | - | - | - |
3.7656 | 78000 | 0.0009 | 0.0004 | 0.7778 | 0.8537 |
3.7897 | 78500 | 0.0009 | - | - | - |
3.8138 | 79000 | 0.0009 | - | - | - |
3.8380 | 79500 | 0.0009 | - | - | - |
3.8621 | 80000 | 0.0009 | 0.0004 | 0.7800 | 0.8539 |
3.8863 | 80500 | 0.0009 | - | - | - |
3.9104 | 81000 | 0.0009 | - | - | - |
3.9345 | 81500 | 0.0009 | - | - | - |
3.9587 | 82000 | 0.0009 | 0.0004 | 0.7797 | 0.8542 |
3.9828 | 82500 | 0.0009 | - | - | - |
4.0070 | 83000 | 0.0009 | - | - | - |
4.0311 | 83500 | 0.0009 | - | - | - |
4.0552 | 84000 | 0.0009 | 0.0004 | 0.7808 | 0.8547 |
4.0794 | 84500 | 0.0009 | - | - | - |
4.1035 | 85000 | 0.0009 | - | - | - |
4.1276 | 85500 | 0.0009 | - | - | - |
4.1518 | 86000 | 0.0009 | 0.0004 | 0.7778 | 0.8545 |
4.1759 | 86500 | 0.0009 | - | - | - |
4.2001 | 87000 | 0.0009 | - | - | - |
4.2242 | 87500 | 0.0009 | - | - | - |
4.2483 | 88000 | 0.0009 | 0.0004 | 0.7815 | 0.8555 |
4.2725 | 88500 | 0.0009 | - | - | - |
4.2966 | 89000 | 0.0009 | - | - | - |
4.3207 | 89500 | 0.0009 | - | - | - |
4.3449 | 90000 | 0.0009 | 0.0004 | 0.7797 | 0.8534 |
4.3690 | 90500 | 0.0009 | - | - | - |
4.3932 | 91000 | 0.0009 | - | - | - |
4.4173 | 91500 | 0.0009 | - | - | - |
4.4414 | 92000 | 0.0009 | 0.0004 | 0.7823 | 0.8547 |
4.4656 | 92500 | 0.0009 | - | - | - |
4.4897 | 93000 | 0.0009 | - | - | - |
4.5139 | 93500 | 0.0009 | - | - | - |
4.5380 | 94000 | 0.0009 | 0.0004 | 0.7783 | 0.8535 |
4.5621 | 94500 | 0.0009 | - | - | - |
4.5863 | 95000 | 0.0009 | - | - | - |
4.6104 | 95500 | 0.0009 | - | - | - |
4.6345 | 96000 | 0.0009 | 0.0004 | 0.7811 | 0.8550 |
4.6587 | 96500 | 0.0009 | - | - | - |
4.6828 | 97000 | 0.0009 | - | - | - |
4.7070 | 97500 | 0.0009 | - | - | - |
4.7311 | 98000 | 0.0009 | 0.0004 | 0.7801 | 0.8540 |
4.7552 | 98500 | 0.0009 | - | - | - |
4.7794 | 99000 | 0.0009 | - | - | - |
4.8035 | 99500 | 0.0009 | - | - | - |
4.8277 | 100000 | 0.0009 | 0.0004 | 0.7811 | 0.8544 |
4.8518 | 100500 | 0.0009 | - | - | - |
4.8759 | 101000 | 0.0009 | - | - | - |
4.9001 | 101500 | 0.0009 | - | - | - |
4.9242 | 102000 | 0.0009 | 0.0004 | 0.7805 | 0.8548 |
4.9483 | 102500 | 0.0009 | - | - | - |
4.9725 | 103000 | 0.0009 | - | - | - |
4.9966 | 103500 | 0.0009 | - | - | - |
5.0208 | 104000 | 0.0009 | 0.0004 | 0.7797 | 0.8534 |
5.0449 | 104500 | 0.0009 | - | - | - |
5.0690 | 105000 | 0.0009 | - | - | - |
5.0932 | 105500 | 0.0009 | - | - | - |
5.1173 | 106000 | 0.0009 | 0.0004 | 0.7821 | 0.8555 |
5.1415 | 106500 | 0.0009 | - | - | - |
5.1656 | 107000 | 0.0009 | - | - | - |
5.1897 | 107500 | 0.0009 | - | - | - |
5.2139 | 108000 | 0.0009 | 0.0004 | 0.7816 | 0.8558 |
5.2380 | 108500 | 0.0009 | - | - | - |
5.2621 | 109000 | 0.0009 | - | - | - |
5.2863 | 109500 | 0.0009 | - | - | - |
5.3104 | 110000 | 0.0009 | 0.0004 | 0.7804 | 0.8556 |
5.3346 | 110500 | 0.0009 | - | - | - |
5.3587 | 111000 | 0.0009 | - | - | - |
5.3828 | 111500 | 0.0009 | - | - | - |
5.4070 | 112000 | 0.0009 | 0.0004 | 0.7813 | 0.8548 |
5.4311 | 112500 | 0.0009 | - | - | - |
5.4552 | 113000 | 0.0009 | - | - | - |
5.4794 | 113500 | 0.0009 | - | - | - |
5.5035 | 114000 | 0.0009 | 0.0004 | 0.7823 | 0.8548 |
5.5277 | 114500 | 0.0009 | - | - | - |
5.5518 | 115000 | 0.0009 | - | - | - |
5.5759 | 115500 | 0.0009 | - | - | - |
5.6001 | 116000 | 0.0009 | 0.0004 | 0.7809 | 0.8551 |
5.6242 | 116500 | 0.0009 | - | - | - |
5.6484 | 117000 | 0.0009 | - | - | - |
5.6725 | 117500 | 0.0009 | - | - | - |
5.6966 | 118000 | 0.0009 | 0.0004 | 0.7833 | 0.8557 |
5.7208 | 118500 | 0.0009 | - | - | - |
5.7449 | 119000 | 0.0009 | - | - | - |
5.7690 | 119500 | 0.0009 | - | - | - |
5.7932 | 120000 | 0.0009 | 0.0004 | 0.7842 | 0.8551 |
5.8173 | 120500 | 0.0009 | - | - | - |
5.8415 | 121000 | 0.0009 | - | - | - |
5.8656 | 121500 | 0.0009 | - | - | - |
5.8897 | 122000 | 0.0009 | 0.0004 | 0.7817 | 0.8563 |
5.9139 | 122500 | 0.0009 | - | - | - |
5.9380 | 123000 | 0.0009 | - | - | - |
5.9622 | 123500 | 0.0009 | - | - | - |
5.9863 | 124000 | 0.0009 | 0.0004 | 0.7812 | 0.8559 |
6.0104 | 124500 | 0.0009 | - | - | - |
6.0346 | 125000 | 0.0009 | - | - | - |
6.0587 | 125500 | 0.0009 | - | - | - |
6.0828 | 126000 | 0.0009 | 0.0004 | 0.7821 | 0.8558 |
6.1070 | 126500 | 0.0009 | - | - | - |
6.1311 | 127000 | 0.0009 | - | - | - |
6.1553 | 127500 | 0.0009 | - | - | - |
6.1794 | 128000 | 0.0009 | 0.0004 | 0.7829 | 0.8548 |
6.2035 | 128500 | 0.0009 | - | - | - |
6.2277 | 129000 | 0.0009 | - | - | - |
6.2518 | 129500 | 0.0009 | - | - | - |
6.2759 | 130000 | 0.0009 | 0.0004 | 0.7805 | 0.8549 |
6.3001 | 130500 | 0.0009 | - | - | - |
6.3242 | 131000 | 0.0009 | - | - | - |
6.3484 | 131500 | 0.0009 | - | - | - |
6.3725 | 132000 | 0.0009 | 0.0004 | 0.7807 | 0.8563 |
6.3966 | 132500 | 0.0009 | - | - | - |
6.4208 | 133000 | 0.0009 | - | - | - |
6.4449 | 133500 | 0.0009 | - | - | - |
6.4691 | 134000 | 0.0009 | 0.0004 | 0.7829 | 0.8555 |
6.4932 | 134500 | 0.0009 | - | - | - |
6.5173 | 135000 | 0.0009 | - | - | - |
6.5415 | 135500 | 0.0009 | - | - | - |
6.5656 | 136000 | 0.0009 | 0.0004 | 0.7819 | 0.8550 |
6.5897 | 136500 | 0.0009 | - | - | - |
6.6139 | 137000 | 0.0009 | - | - | - |
6.6380 | 137500 | 0.0009 | - | - | - |
6.6622 | 138000 | 0.0009 | 0.0004 | 0.7800 | 0.8548 |
6.6863 | 138500 | 0.0009 | - | - | - |
6.7104 | 139000 | 0.0009 | - | - | - |
6.7346 | 139500 | 0.0009 | - | - | - |
6.7587 | 140000 | 0.0009 | 0.0004 | 0.7817 | 0.8555 |
6.7829 | 140500 | 0.0009 | - | - | - |
6.8070 | 141000 | 0.0009 | - | - | - |
6.8311 | 141500 | 0.0009 | - | - | - |
6.8553 | 142000 | 0.0009 | 0.0004 | 0.7812 | 0.8556 |
6.8794 | 142500 | 0.0009 | - | - | - |
6.9035 | 143000 | 0.0009 | - | - | - |
6.9277 | 143500 | 0.0009 | - | - | - |
6.9518 | 144000 | 0.0009 | 0.0004 | 0.7830 | 0.8559 |
6.9760 | 144500 | 0.0009 | - | - | - |
7.0001 | 145000 | 0.0009 | - | - | - |
7.0242 | 145500 | 0.0009 | - | - | - |
7.0484 | 146000 | 0.0009 | 0.0004 | 0.7809 | 0.8561 |
7.0725 | 146500 | 0.0009 | - | - | - |
7.0966 | 147000 | 0.0009 | - | - | - |
7.1208 | 147500 | 0.0009 | - | - | - |
7.1449 | 148000 | 0.0009 | 0.0004 | 0.7798 | 0.8560 |
7.1691 | 148500 | 0.0009 | - | - | - |
7.1932 | 149000 | 0.0009 | - | - | - |
7.2173 | 149500 | 0.0009 | - | - | - |
7.2415 | 150000 | 0.0009 | 0.0004 | 0.7815 | 0.8559 |
7.2656 | 150500 | 0.0009 | - | - | - |
7.2898 | 151000 | 0.0009 | - | - | - |
7.3139 | 151500 | 0.0009 | - | - | - |
7.3380 | 152000 | 0.0009 | 0.0004 | 0.7828 | 0.8562 |
7.3622 | 152500 | 0.0009 | - | - | - |
7.3863 | 153000 | 0.0009 | - | - | - |
7.4104 | 153500 | 0.0009 | - | - | - |
7.4346 | 154000 | 0.0009 | 0.0004 | 0.7837 | 0.8565 |
7.4587 | 154500 | 0.0009 | - | - | - |
7.4829 | 155000 | 0.0009 | - | - | - |
7.5070 | 155500 | 0.0009 | - | - | - |
7.5311 | 156000 | 0.0009 | 0.0004 | 0.7819 | 0.8565 |
7.5553 | 156500 | 0.0009 | - | - | - |
7.5794 | 157000 | 0.0009 | - | - | - |
7.6036 | 157500 | 0.0009 | - | - | - |
7.6277 | 158000 | 0.0009 | 0.0004 | 0.7818 | 0.8557 |
7.6518 | 158500 | 0.0009 | - | - | - |
7.6760 | 159000 | 0.0009 | - | - | - |
7.7001 | 159500 | 0.0009 | - | - | - |
7.7242 | 160000 | 0.0009 | 0.0004 | 0.7811 | 0.8557 |
7.7484 | 160500 | 0.0009 | - | - | - |
7.7725 | 161000 | 0.0009 | - | - | - |
7.7967 | 161500 | 0.0009 | - | - | - |
7.8208 | 162000 | 0.0009 | 0.0004 | 0.7821 | 0.8566 |
7.8449 | 162500 | 0.0009 | - | - | - |
7.8691 | 163000 | 0.0009 | - | - | - |
7.8932 | 163500 | 0.0009 | - | - | - |
7.9174 | 164000 | 0.0009 | 0.0004 | 0.7815 | 0.8564 |
7.9415 | 164500 | 0.0009 | - | - | - |
7.9656 | 165000 | 0.0009 | - | - | - |
7.9898 | 165500 | 0.0009 | - | - | - |
Framework Versions
- Python: 3.10.16
- Sentence Transformers: 3.3.1
- Transformers: 4.51.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}