SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 128 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Nano-structure A nanostructure is an intermediate size between molecular and microscopic (micrometer-sized) structures.',
    'ナノ構造は、分子構造と微視的(マイクロメートルサイズ)構造との間の中間サイズの対象である。',
    '魔術のお話に戻りましょう。',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric JSTS stsb_multi_mt-en
pearson_cosine 0.8235 0.8363
spearman_cosine 0.7815 0.8564

Training Details

Training Dataset

Unnamed Dataset

  • Size: 21,210,762 training samples
  • Columns: english, non_english, and label
  • Approximate statistics based on the first 1000 samples:
    english non_english label
    type string string list
    details
    • min: 4 tokens
    • mean: 16.46 tokens
    • max: 92 tokens
    • min: 4 tokens
    • mean: 21.99 tokens
    • max: 128 tokens
    • size: 384 elements
  • Samples:
    english non_english label
    We live the life of the project. プロジェクトの生命を左右する。 [0.009600206278264523, 0.058811139315366745, 0.023707984015345573, -0.021880649030208588, 0.068634033203125, ...]
    Hold on here, Mr. Budget Director. ここいろ編集長 [-0.04940887540578842, -0.013437069952487946, 0.024199623614549637, -0.02371774986386299, 0.06858911365270615, ...]
    So yes, biology has all the attributes of a transportation genius today. そうです 生物は 今日話した最高の交通にある特性を 全て持ち合わせています [0.031787291169166565, 0.011292539536952972, 0.03621761128306389, -0.04237872734665871, -0.030112963169813156, ...]
  • Loss: MSELoss

Evaluation Dataset

Unnamed Dataset

  • Size: 214,251 evaluation samples
  • Columns: english, non_english, and label
  • Approximate statistics based on the first 1000 samples:
    english non_english label
    type string string list
    details
    • min: 4 tokens
    • mean: 16.24 tokens
    • max: 88 tokens
    • min: 4 tokens
    • mean: 22.18 tokens
    • max: 128 tokens
    • size: 384 elements
  • Samples:
    english non_english label
    Then the next step was the social bookmarking. 次のカテゴリはソーシャルブックマークです。 [-0.040418993681669235, 0.019537044689059258, -0.014964035712182522, -0.06385297328233719, 0.00023657231940887868, ...]
    Ooh! Scary word! Ahh! なんと 恐ろしい言葉! [0.023886308073997498, -0.04336044192314148, -0.057255394756793976, 0.05142980441451073, 0.06282227486371994, ...]
    Usually Ebates offers 1. 通常提示スプレッド*1 [0.00018616259330883622, -0.01999301090836525, 0.049356017261743546, 0.002617522142827511, -0.0540102981030941, ...]
  • Loss: MSELoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 512
  • per_device_eval_batch_size: 512
  • gradient_accumulation_steps: 2
  • learning_rate: 0.0003
  • num_train_epochs: 8
  • warmup_ratio: 0.15
  • bf16: True
  • dataloader_num_workers: 8

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 512
  • per_device_eval_batch_size: 512
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.0003
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 8
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.15
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 8
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss JSTS_spearman_cosine stsb_multi_mt-en_spearman_cosine
0.0241 500 0.0064 - - -
0.0483 1000 0.0045 - - -
0.0724 1500 0.0038 - - -
0.0966 2000 0.0035 0.0016 0.3008 0.2821
0.1207 2500 0.0033 - - -
0.1448 3000 0.0031 - - -
0.1690 3500 0.0029 - - -
0.1931 4000 0.0028 0.0013 0.4989 0.4681
0.2172 4500 0.0026 - - -
0.2414 5000 0.0025 - - -
0.2655 5500 0.0023 - - -
0.2897 6000 0.0022 0.0010 0.6554 0.6567
0.3138 6500 0.0021 - - -
0.3379 7000 0.002 - - -
0.3621 7500 0.0019 - - -
0.3862 8000 0.0018 0.0008 0.7038 0.7328
0.4104 8500 0.0017 - - -
0.4345 9000 0.0017 - - -
0.4586 9500 0.0016 - - -
0.4828 10000 0.0016 0.0007 0.7420 0.7662
0.5069 10500 0.0015 - - -
0.5310 11000 0.0015 - - -
0.5552 11500 0.0014 - - -
0.5793 12000 0.0014 0.0006 0.7559 0.7929
0.6035 12500 0.0014 - - -
0.6276 13000 0.0014 - - -
0.6517 13500 0.0013 - - -
0.6759 14000 0.0013 0.0006 0.7625 0.8056
0.7000 14500 0.0013 - - -
0.7241 15000 0.0013 - - -
0.7483 15500 0.0012 - - -
0.7724 16000 0.0012 0.0006 0.7652 0.8150
0.7966 16500 0.0012 - - -
0.8207 17000 0.0012 - - -
0.8448 17500 0.0012 - - -
0.8690 18000 0.0012 0.0005 0.7679 0.8209
0.8931 18500 0.0012 - - -
0.9173 19000 0.0011 - - -
0.9414 19500 0.0011 - - -
0.9655 20000 0.0011 0.0005 0.7727 0.8269
0.9897 20500 0.0011 - - -
1.0138 21000 0.0011 - - -
1.0379 21500 0.0011 - - -
1.0621 22000 0.0011 0.0005 0.7682 0.8319
1.0862 22500 0.0011 - - -
1.1104 23000 0.0011 - - -
1.1345 23500 0.0011 - - -
1.1586 24000 0.0011 0.0005 0.7718 0.8372
1.1828 24500 0.0011 - - -
1.2069 25000 0.0011 - - -
1.2311 25500 0.0011 - - -
1.2552 26000 0.001 0.0005 0.7751 0.8408
1.2793 26500 0.001 - - -
1.3035 27000 0.001 - - -
1.3276 27500 0.001 - - -
1.3517 28000 0.001 0.0005 0.7703 0.8437
1.3759 28500 0.001 - - -
1.4000 29000 0.001 - - -
1.4242 29500 0.001 - - -
1.4483 30000 0.001 0.0005 0.7730 0.8439
1.4724 30500 0.001 - - -
1.4966 31000 0.001 - - -
1.5207 31500 0.001 - - -
1.5448 32000 0.001 0.0005 0.7719 0.8456
1.5690 32500 0.001 - - -
1.5931 33000 0.001 - - -
1.6173 33500 0.001 - - -
1.6414 34000 0.001 0.0005 0.7719 0.8449
1.6655 34500 0.001 - - -
1.6897 35000 0.001 - - -
1.7138 35500 0.001 - - -
1.7380 36000 0.001 0.0004 0.7717 0.8455
1.7621 36500 0.001 - - -
1.7862 37000 0.001 - - -
1.8104 37500 0.001 - - -
1.8345 38000 0.001 0.0004 0.7714 0.8488
1.8586 38500 0.001 - - -
1.8828 39000 0.001 - - -
1.9069 39500 0.001 - - -
1.9311 40000 0.001 0.0004 0.7753 0.8474
1.9552 40500 0.001 - - -
1.9793 41000 0.001 - - -
2.0035 41500 0.001 - - -
2.0276 42000 0.001 0.0004 0.7708 0.8479
2.0518 42500 0.001 - - -
2.0759 43000 0.001 - - -
2.1000 43500 0.001 - - -
2.1242 44000 0.001 0.0004 0.7703 0.8505
2.1483 44500 0.001 - - -
2.1724 45000 0.0009 - - -
2.1966 45500 0.0009 - - -
2.2207 46000 0.0009 0.0004 0.7752 0.8525
2.2449 46500 0.0009 - - -
2.2690 47000 0.0009 - - -
2.2931 47500 0.0009 - - -
2.3173 48000 0.0009 0.0004 0.7734 0.8518
2.3414 48500 0.0009 - - -
2.3655 49000 0.0009 - - -
2.3897 49500 0.0009 - - -
2.4138 50000 0.0009 0.0004 0.7725 0.8512
2.4380 50500 0.0009 - - -
2.4621 51000 0.0009 - - -
2.4862 51500 0.0009 - - -
2.5104 52000 0.0009 0.0004 0.7709 0.8535
2.5345 52500 0.0009 - - -
2.5587 53000 0.0009 - - -
2.5828 53500 0.0009 - - -
2.6069 54000 0.0009 0.0004 0.7751 0.8519
2.6311 54500 0.0009 - - -
2.6552 55000 0.0009 - - -
2.6793 55500 0.0009 - - -
2.7035 56000 0.0009 0.0004 0.7770 0.8500
2.7276 56500 0.0009 - - -
2.7518 57000 0.0009 - - -
2.7759 57500 0.0009 - - -
2.8000 58000 0.0009 0.0004 0.7756 0.8514
2.8242 58500 0.0009 - - -
2.8483 59000 0.0009 - - -
2.8725 59500 0.0009 - - -
2.8966 60000 0.0009 0.0004 0.7791 0.8541
2.9207 60500 0.0009 - - -
2.9449 61000 0.0009 - - -
2.9690 61500 0.0009 - - -
2.9931 62000 0.0009 0.0004 0.7759 0.8539
3.0173 62500 0.0009 - - -
3.0414 63000 0.0009 - - -
3.0656 63500 0.0009 - - -
3.0897 64000 0.0009 0.0004 0.7770 0.8526
3.1138 64500 0.0009 - - -
3.1380 65000 0.0009 - - -
3.1621 65500 0.0009 - - -
3.1863 66000 0.0009 0.0004 0.7762 0.8531
3.2104 66500 0.0009 - - -
3.2345 67000 0.0009 - - -
3.2587 67500 0.0009 - - -
3.2828 68000 0.0009 0.0004 0.7771 0.8515
3.3069 68500 0.0009 - - -
3.3311 69000 0.0009 - - -
3.3552 69500 0.0009 - - -
3.3794 70000 0.0009 0.0004 0.7757 0.8530
3.4035 70500 0.0009 - - -
3.4276 71000 0.0009 - - -
3.4518 71500 0.0009 - - -
3.4759 72000 0.0009 0.0004 0.7776 0.8532
3.5000 72500 0.0009 - - -
3.5242 73000 0.0009 - - -
3.5483 73500 0.0009 - - -
3.5725 74000 0.0009 0.0004 0.7776 0.8542
3.5966 74500 0.0009 - - -
3.6207 75000 0.0009 - - -
3.6449 75500 0.0009 - - -
3.6690 76000 0.0009 0.0004 0.7803 0.8539
3.6932 76500 0.0009 - - -
3.7173 77000 0.0009 - - -
3.7414 77500 0.0009 - - -
3.7656 78000 0.0009 0.0004 0.7778 0.8537
3.7897 78500 0.0009 - - -
3.8138 79000 0.0009 - - -
3.8380 79500 0.0009 - - -
3.8621 80000 0.0009 0.0004 0.7800 0.8539
3.8863 80500 0.0009 - - -
3.9104 81000 0.0009 - - -
3.9345 81500 0.0009 - - -
3.9587 82000 0.0009 0.0004 0.7797 0.8542
3.9828 82500 0.0009 - - -
4.0070 83000 0.0009 - - -
4.0311 83500 0.0009 - - -
4.0552 84000 0.0009 0.0004 0.7808 0.8547
4.0794 84500 0.0009 - - -
4.1035 85000 0.0009 - - -
4.1276 85500 0.0009 - - -
4.1518 86000 0.0009 0.0004 0.7778 0.8545
4.1759 86500 0.0009 - - -
4.2001 87000 0.0009 - - -
4.2242 87500 0.0009 - - -
4.2483 88000 0.0009 0.0004 0.7815 0.8555
4.2725 88500 0.0009 - - -
4.2966 89000 0.0009 - - -
4.3207 89500 0.0009 - - -
4.3449 90000 0.0009 0.0004 0.7797 0.8534
4.3690 90500 0.0009 - - -
4.3932 91000 0.0009 - - -
4.4173 91500 0.0009 - - -
4.4414 92000 0.0009 0.0004 0.7823 0.8547
4.4656 92500 0.0009 - - -
4.4897 93000 0.0009 - - -
4.5139 93500 0.0009 - - -
4.5380 94000 0.0009 0.0004 0.7783 0.8535
4.5621 94500 0.0009 - - -
4.5863 95000 0.0009 - - -
4.6104 95500 0.0009 - - -
4.6345 96000 0.0009 0.0004 0.7811 0.8550
4.6587 96500 0.0009 - - -
4.6828 97000 0.0009 - - -
4.7070 97500 0.0009 - - -
4.7311 98000 0.0009 0.0004 0.7801 0.8540
4.7552 98500 0.0009 - - -
4.7794 99000 0.0009 - - -
4.8035 99500 0.0009 - - -
4.8277 100000 0.0009 0.0004 0.7811 0.8544
4.8518 100500 0.0009 - - -
4.8759 101000 0.0009 - - -
4.9001 101500 0.0009 - - -
4.9242 102000 0.0009 0.0004 0.7805 0.8548
4.9483 102500 0.0009 - - -
4.9725 103000 0.0009 - - -
4.9966 103500 0.0009 - - -
5.0208 104000 0.0009 0.0004 0.7797 0.8534
5.0449 104500 0.0009 - - -
5.0690 105000 0.0009 - - -
5.0932 105500 0.0009 - - -
5.1173 106000 0.0009 0.0004 0.7821 0.8555
5.1415 106500 0.0009 - - -
5.1656 107000 0.0009 - - -
5.1897 107500 0.0009 - - -
5.2139 108000 0.0009 0.0004 0.7816 0.8558
5.2380 108500 0.0009 - - -
5.2621 109000 0.0009 - - -
5.2863 109500 0.0009 - - -
5.3104 110000 0.0009 0.0004 0.7804 0.8556
5.3346 110500 0.0009 - - -
5.3587 111000 0.0009 - - -
5.3828 111500 0.0009 - - -
5.4070 112000 0.0009 0.0004 0.7813 0.8548
5.4311 112500 0.0009 - - -
5.4552 113000 0.0009 - - -
5.4794 113500 0.0009 - - -
5.5035 114000 0.0009 0.0004 0.7823 0.8548
5.5277 114500 0.0009 - - -
5.5518 115000 0.0009 - - -
5.5759 115500 0.0009 - - -
5.6001 116000 0.0009 0.0004 0.7809 0.8551
5.6242 116500 0.0009 - - -
5.6484 117000 0.0009 - - -
5.6725 117500 0.0009 - - -
5.6966 118000 0.0009 0.0004 0.7833 0.8557
5.7208 118500 0.0009 - - -
5.7449 119000 0.0009 - - -
5.7690 119500 0.0009 - - -
5.7932 120000 0.0009 0.0004 0.7842 0.8551
5.8173 120500 0.0009 - - -
5.8415 121000 0.0009 - - -
5.8656 121500 0.0009 - - -
5.8897 122000 0.0009 0.0004 0.7817 0.8563
5.9139 122500 0.0009 - - -
5.9380 123000 0.0009 - - -
5.9622 123500 0.0009 - - -
5.9863 124000 0.0009 0.0004 0.7812 0.8559
6.0104 124500 0.0009 - - -
6.0346 125000 0.0009 - - -
6.0587 125500 0.0009 - - -
6.0828 126000 0.0009 0.0004 0.7821 0.8558
6.1070 126500 0.0009 - - -
6.1311 127000 0.0009 - - -
6.1553 127500 0.0009 - - -
6.1794 128000 0.0009 0.0004 0.7829 0.8548
6.2035 128500 0.0009 - - -
6.2277 129000 0.0009 - - -
6.2518 129500 0.0009 - - -
6.2759 130000 0.0009 0.0004 0.7805 0.8549
6.3001 130500 0.0009 - - -
6.3242 131000 0.0009 - - -
6.3484 131500 0.0009 - - -
6.3725 132000 0.0009 0.0004 0.7807 0.8563
6.3966 132500 0.0009 - - -
6.4208 133000 0.0009 - - -
6.4449 133500 0.0009 - - -
6.4691 134000 0.0009 0.0004 0.7829 0.8555
6.4932 134500 0.0009 - - -
6.5173 135000 0.0009 - - -
6.5415 135500 0.0009 - - -
6.5656 136000 0.0009 0.0004 0.7819 0.8550
6.5897 136500 0.0009 - - -
6.6139 137000 0.0009 - - -
6.6380 137500 0.0009 - - -
6.6622 138000 0.0009 0.0004 0.7800 0.8548
6.6863 138500 0.0009 - - -
6.7104 139000 0.0009 - - -
6.7346 139500 0.0009 - - -
6.7587 140000 0.0009 0.0004 0.7817 0.8555
6.7829 140500 0.0009 - - -
6.8070 141000 0.0009 - - -
6.8311 141500 0.0009 - - -
6.8553 142000 0.0009 0.0004 0.7812 0.8556
6.8794 142500 0.0009 - - -
6.9035 143000 0.0009 - - -
6.9277 143500 0.0009 - - -
6.9518 144000 0.0009 0.0004 0.7830 0.8559
6.9760 144500 0.0009 - - -
7.0001 145000 0.0009 - - -
7.0242 145500 0.0009 - - -
7.0484 146000 0.0009 0.0004 0.7809 0.8561
7.0725 146500 0.0009 - - -
7.0966 147000 0.0009 - - -
7.1208 147500 0.0009 - - -
7.1449 148000 0.0009 0.0004 0.7798 0.8560
7.1691 148500 0.0009 - - -
7.1932 149000 0.0009 - - -
7.2173 149500 0.0009 - - -
7.2415 150000 0.0009 0.0004 0.7815 0.8559
7.2656 150500 0.0009 - - -
7.2898 151000 0.0009 - - -
7.3139 151500 0.0009 - - -
7.3380 152000 0.0009 0.0004 0.7828 0.8562
7.3622 152500 0.0009 - - -
7.3863 153000 0.0009 - - -
7.4104 153500 0.0009 - - -
7.4346 154000 0.0009 0.0004 0.7837 0.8565
7.4587 154500 0.0009 - - -
7.4829 155000 0.0009 - - -
7.5070 155500 0.0009 - - -
7.5311 156000 0.0009 0.0004 0.7819 0.8565
7.5553 156500 0.0009 - - -
7.5794 157000 0.0009 - - -
7.6036 157500 0.0009 - - -
7.6277 158000 0.0009 0.0004 0.7818 0.8557
7.6518 158500 0.0009 - - -
7.6760 159000 0.0009 - - -
7.7001 159500 0.0009 - - -
7.7242 160000 0.0009 0.0004 0.7811 0.8557
7.7484 160500 0.0009 - - -
7.7725 161000 0.0009 - - -
7.7967 161500 0.0009 - - -
7.8208 162000 0.0009 0.0004 0.7821 0.8566
7.8449 162500 0.0009 - - -
7.8691 163000 0.0009 - - -
7.8932 163500 0.0009 - - -
7.9174 164000 0.0009 0.0004 0.7815 0.8564
7.9415 164500 0.0009 - - -
7.9656 165000 0.0009 - - -
7.9898 165500 0.0009 - - -

Framework Versions

  • Python: 3.10.16
  • Sentence Transformers: 3.3.1
  • Transformers: 4.51.3
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MSELoss

@inproceedings{reimers-2020-multilingual-sentence-bert,
    title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2020",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2004.09813",
}
Downloads last month
7
Safetensors
Model size
35.6M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for jvanhoof/all-miniLM-L6-v2-BGEs-distilled-en-ja-64K-vocab-mean-21M-test

Finetuned
(419)
this model

Evaluation results