SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Nano-structure A nanostructure is an intermediate size between molecular and microscopic (micrometer-sized) structures.',
'ナノ構造は、分子構造と微視的(マイクロメートルサイズ)構造との間の中間サイズの対象である。',
'魔術のお話に戻りましょう。',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
JSTS
andstsb_multi_mt-en
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | JSTS | stsb_multi_mt-en |
---|---|---|
pearson_cosine | 0.8235 | 0.8363 |
spearman_cosine | 0.7815 | 0.8564 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 21,210,762 training samples
- Columns:
english
,non_english
, andlabel
- Approximate statistics based on the first 1000 samples:
english non_english label type string string list details - min: 4 tokens
- mean: 16.46 tokens
- max: 92 tokens
- min: 4 tokens
- mean: 21.99 tokens
- max: 128 tokens
- size: 384 elements
- Samples:
english non_english label We live the life of the project.
プロジェクトの生命を左右する。
[0.009600206278264523, 0.058811139315366745, 0.023707984015345573, -0.021880649030208588, 0.068634033203125, ...]
Hold on here, Mr. Budget Director.
ここいろ編集長
[-0.04940887540578842, -0.013437069952487946, 0.024199623614549637, -0.02371774986386299, 0.06858911365270615, ...]
So yes, biology has all the attributes of a transportation genius today.
そうです 生物は 今日話した最高の交通にある特性を 全て持ち合わせています
[0.031787291169166565, 0.011292539536952972, 0.03621761128306389, -0.04237872734665871, -0.030112963169813156, ...]
- Loss:
MSELoss
Evaluation Dataset
Unnamed Dataset
- Size: 214,251 evaluation samples
- Columns:
english
,non_english
, andlabel
- Approximate statistics based on the first 1000 samples:
english non_english label type string string list details - min: 4 tokens
- mean: 16.24 tokens
- max: 88 tokens
- min: 4 tokens
- mean: 22.18 tokens
- max: 128 tokens
- size: 384 elements
- Samples:
english non_english label Then the next step was the social bookmarking.
次のカテゴリはソーシャルブックマークです。
[-0.040418993681669235, 0.019537044689059258, -0.014964035712182522, -0.06385297328233719, 0.00023657231940887868, ...]
Ooh! Scary word! Ahh!
なんと 恐ろしい言葉!
[0.023886308073997498, -0.04336044192314148, -0.057255394756793976, 0.05142980441451073, 0.06282227486371994, ...]
Usually Ebates offers 1.
通常提示スプレッド*1
[0.00018616259330883622, -0.01999301090836525, 0.049356017261743546, 0.002617522142827511, -0.0540102981030941, ...]
- Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 512per_device_eval_batch_size
: 512gradient_accumulation_steps
: 2learning_rate
: 0.0003num_train_epochs
: 8warmup_ratio
: 0.15bf16
: Truedataloader_num_workers
: 8
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 512per_device_eval_batch_size
: 512per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.0003weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 8max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.15warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 8dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | JSTS_spearman_cosine | stsb_multi_mt-en_spearman_cosine |
---|---|---|---|---|---|
0.0241 | 500 | 0.0064 | - | - | - |
0.0483 | 1000 | 0.0045 | - | - | - |
0.0724 | 1500 | 0.0038 | - | - | - |
0.0966 | 2000 | 0.0035 | 0.0016 | 0.3008 | 0.2821 |
0.1207 | 2500 | 0.0033 | - | - | - |
0.1448 | 3000 | 0.0031 | - | - | - |
0.1690 | 3500 | 0.0029 | - | - | - |
0.1931 | 4000 | 0.0028 | 0.0013 | 0.4989 | 0.4681 |
0.2172 | 4500 | 0.0026 | - | - | - |
0.2414 | 5000 | 0.0025 | - | - | - |
0.2655 | 5500 | 0.0023 | - | - | - |
0.2897 | 6000 | 0.0022 | 0.0010 | 0.6554 | 0.6567 |
0.3138 | 6500 | 0.0021 | - | - | - |
0.3379 | 7000 | 0.002 | - | - | - |
0.3621 | 7500 | 0.0019 | - | - | - |
0.3862 | 8000 | 0.0018 | 0.0008 | 0.7038 | 0.7328 |
0.4104 | 8500 | 0.0017 | - | - | - |
0.4345 | 9000 | 0.0017 | - | - | - |
0.4586 | 9500 | 0.0016 | - | - | - |
0.4828 | 10000 | 0.0016 | 0.0007 | 0.7420 | 0.7662 |
0.5069 | 10500 | 0.0015 | - | - | - |
0.5310 | 11000 | 0.0015 | - | - | - |
0.5552 | 11500 | 0.0014 | - | - | - |
0.5793 | 12000 | 0.0014 | 0.0006 | 0.7559 | 0.7929 |
0.6035 | 12500 | 0.0014 | - | - | - |
0.6276 | 13000 | 0.0014 | - | - | - |
0.6517 | 13500 | 0.0013 | - | - | - |
0.6759 | 14000 | 0.0013 | 0.0006 | 0.7625 | 0.8056 |
0.7000 | 14500 | 0.0013 | - | - | - |
0.7241 | 15000 | 0.0013 | - | - | - |
0.7483 | 15500 | 0.0012 | - | - | - |
0.7724 | 16000 | 0.0012 | 0.0006 | 0.7652 | 0.8150 |
0.7966 | 16500 | 0.0012 | - | - | - |
0.8207 | 17000 | 0.0012 | - | - | - |
0.8448 | 17500 | 0.0012 | - | - | - |
0.8690 | 18000 | 0.0012 | 0.0005 | 0.7679 | 0.8209 |
0.8931 | 18500 | 0.0012 | - | - | - |
0.9173 | 19000 | 0.0011 | - | - | - |
0.9414 | 19500 | 0.0011 | - | - | - |
0.9655 | 20000 | 0.0011 | 0.0005 | 0.7727 | 0.8269 |
0.9897 | 20500 | 0.0011 | - | - | - |
1.0138 | 21000 | 0.0011 | - | - | - |
1.0379 | 21500 | 0.0011 | - | - | - |
1.0621 | 22000 | 0.0011 | 0.0005 | 0.7682 | 0.8319 |
1.0862 | 22500 | 0.0011 | - | - | - |
1.1104 | 23000 | 0.0011 | - | - | - |
1.1345 | 23500 | 0.0011 | - | - | - |
1.1586 | 24000 | 0.0011 | 0.0005 | 0.7718 | 0.8372 |
1.1828 | 24500 | 0.0011 | - | - | - |
1.2069 | 25000 | 0.0011 | - | - | - |
1.2311 | 25500 | 0.0011 | - | - | - |
1.2552 | 26000 | 0.001 | 0.0005 | 0.7751 | 0.8408 |
1.2793 | 26500 | 0.001 | - | - | - |
1.3035 | 27000 | 0.001 | - | - | - |
1.3276 | 27500 | 0.001 | - | - | - |
1.3517 | 28000 | 0.001 | 0.0005 | 0.7703 | 0.8437 |
1.3759 | 28500 | 0.001 | - | - | - |
1.4000 | 29000 | 0.001 | - | - | - |
1.4242 | 29500 | 0.001 | - | - | - |
1.4483 | 30000 | 0.001 | 0.0005 | 0.7730 | 0.8439 |
1.4724 | 30500 | 0.001 | - | - | - |
1.4966 | 31000 | 0.001 | - | - | - |
1.5207 | 31500 | 0.001 | - | - | - |
1.5448 | 32000 | 0.001 | 0.0005 | 0.7719 | 0.8456 |
1.5690 | 32500 | 0.001 | - | - | - |
1.5931 | 33000 | 0.001 | - | - | - |
1.6173 | 33500 | 0.001 | - | - | - |
1.6414 | 34000 | 0.001 | 0.0005 | 0.7719 | 0.8449 |
1.6655 | 34500 | 0.001 | - | - | - |
1.6897 | 35000 | 0.001 | - | - | - |
1.7138 | 35500 | 0.001 | - | - | - |
1.7380 | 36000 | 0.001 | 0.0004 | 0.7717 | 0.8455 |
1.7621 | 36500 | 0.001 | - | - | - |
1.7862 | 37000 | 0.001 | - | - | - |
1.8104 | 37500 | 0.001 | - | - | - |
1.8345 | 38000 | 0.001 | 0.0004 | 0.7714 | 0.8488 |
1.8586 | 38500 | 0.001 | - | - | - |
1.8828 | 39000 | 0.001 | - | - | - |
1.9069 | 39500 | 0.001 | - | - | - |
1.9311 | 40000 | 0.001 | 0.0004 | 0.7753 | 0.8474 |
1.9552 | 40500 | 0.001 | - | - | - |
1.9793 | 41000 | 0.001 | - | - | - |
2.0035 | 41500 | 0.001 | - | - | - |
2.0276 | 42000 | 0.001 | 0.0004 | 0.7708 | 0.8479 |
2.0518 | 42500 | 0.001 | - | - | - |
2.0759 | 43000 | 0.001 | - | - | - |
2.1000 | 43500 | 0.001 | - | - | - |
2.1242 | 44000 | 0.001 | 0.0004 | 0.7703 | 0.8505 |
2.1483 | 44500 | 0.001 | - | - | - |
2.1724 | 45000 | 0.0009 | - | - | - |
2.1966 | 45500 | 0.0009 | - | - | - |
2.2207 | 46000 | 0.0009 | 0.0004 | 0.7752 | 0.8525 |
2.2449 | 46500 | 0.0009 | - | - | - |
2.2690 | 47000 | 0.0009 | - | - | - |
2.2931 | 47500 | 0.0009 | - | - | - |
2.3173 | 48000 | 0.0009 | 0.0004 | 0.7734 | 0.8518 |
2.3414 | 48500 | 0.0009 | - | - | - |
2.3655 | 49000 | 0.0009 | - | - | - |
2.3897 | 49500 | 0.0009 | - | - | - |
2.4138 | 50000 | 0.0009 | 0.0004 | 0.7725 | 0.8512 |
2.4380 | 50500 | 0.0009 | - | - | - |
2.4621 | 51000 | 0.0009 | - | - | - |
2.4862 | 51500 | 0.0009 | - | - | - |
2.5104 | 52000 | 0.0009 | 0.0004 | 0.7709 | 0.8535 |
2.5345 | 52500 | 0.0009 | - | - | - |
2.5587 | 53000 | 0.0009 | - | - | - |
2.5828 | 53500 | 0.0009 | - | - | - |
2.6069 | 54000 | 0.0009 | 0.0004 | 0.7751 | 0.8519 |
2.6311 | 54500 | 0.0009 | - | - | - |
2.6552 | 55000 | 0.0009 | - | - | - |
2.6793 | 55500 | 0.0009 | - | - | - |
2.7035 | 56000 | 0.0009 | 0.0004 | 0.7770 | 0.8500 |
2.7276 | 56500 | 0.0009 | - | - | - |
2.7518 | 57000 | 0.0009 | - | - | - |
2.7759 | 57500 | 0.0009 | - | - | - |
2.8000 | 58000 | 0.0009 | 0.0004 | 0.7756 | 0.8514 |
2.8242 | 58500 | 0.0009 | - | - | - |
2.8483 | 59000 | 0.0009 | - | - | - |
2.8725 | 59500 | 0.0009 | - | - | - |
2.8966 | 60000 | 0.0009 | 0.0004 | 0.7791 | 0.8541 |
2.9207 | 60500 | 0.0009 | - | - | - |
2.9449 | 61000 | 0.0009 | - | - | - |
2.9690 | 61500 | 0.0009 | - | - | - |
2.9931 | 62000 | 0.0009 | 0.0004 | 0.7759 | 0.8539 |
3.0173 | 62500 | 0.0009 | - | - | - |
3.0414 | 63000 | 0.0009 | - | - | - |
3.0656 | 63500 | 0.0009 | - | - | - |
3.0897 | 64000 | 0.0009 | 0.0004 | 0.7770 | 0.8526 |
3.1138 | 64500 | 0.0009 | - | - | - |
3.1380 | 65000 | 0.0009 | - | - | - |
3.1621 | 65500 | 0.0009 | - | - | - |
3.1863 | 66000 | 0.0009 | 0.0004 | 0.7762 | 0.8531 |
3.2104 | 66500 | 0.0009 | - | - | - |
3.2345 | 67000 | 0.0009 | - | - | - |
3.2587 | 67500 | 0.0009 | - | - | - |
3.2828 | 68000 | 0.0009 | 0.0004 | 0.7771 | 0.8515 |
3.3069 | 68500 | 0.0009 | - | - | - |
3.3311 | 69000 | 0.0009 | - | - | - |
3.3552 | 69500 | 0.0009 | - | - | - |
3.3794 | 70000 | 0.0009 | 0.0004 | 0.7757 | 0.8530 |
3.4035 | 70500 | 0.0009 | - | - | - |
3.4276 | 71000 | 0.0009 | - | - | - |
3.4518 | 71500 | 0.0009 | - | - | - |
3.4759 | 72000 | 0.0009 | 0.0004 | 0.7776 | 0.8532 |
3.5000 | 72500 | 0.0009 | - | - | - |
3.5242 | 73000 | 0.0009 | - | - | - |
3.5483 | 73500 | 0.0009 | - | - | - |
3.5725 | 74000 | 0.0009 | 0.0004 | 0.7776 | 0.8542 |
3.5966 | 74500 | 0.0009 | - | - | - |
3.6207 | 75000 | 0.0009 | - | - | - |
3.6449 | 75500 | 0.0009 | - | - | - |
3.6690 | 76000 | 0.0009 | 0.0004 | 0.7803 | 0.8539 |
3.6932 | 76500 | 0.0009 | - | - | - |
3.7173 | 77000 | 0.0009 | - | - | - |
3.7414 | 77500 | 0.0009 | - | - | - |
3.7656 | 78000 | 0.0009 | 0.0004 | 0.7778 | 0.8537 |
3.7897 | 78500 | 0.0009 | - | - | - |
3.8138 | 79000 | 0.0009 | - | - | - |
3.8380 | 79500 | 0.0009 | - | - | - |
3.8621 | 80000 | 0.0009 | 0.0004 | 0.7800 | 0.8539 |
3.8863 | 80500 | 0.0009 | - | - | - |
3.9104 | 81000 | 0.0009 | - | - | - |
3.9345 | 81500 | 0.0009 | - | - | - |
3.9587 | 82000 | 0.0009 | 0.0004 | 0.7797 | 0.8542 |
3.9828 | 82500 | 0.0009 | - | - | - |
4.0070 | 83000 | 0.0009 | - | - | - |
4.0311 | 83500 | 0.0009 | - | - | - |
4.0552 | 84000 | 0.0009 | 0.0004 | 0.7808 | 0.8547 |
4.0794 | 84500 | 0.0009 | - | - | - |
4.1035 | 85000 | 0.0009 | - | - | - |
4.1276 | 85500 | 0.0009 | - | - | - |
4.1518 | 86000 | 0.0009 | 0.0004 | 0.7778 | 0.8545 |
4.1759 | 86500 | 0.0009 | - | - | - |
4.2001 | 87000 | 0.0009 | - | - | - |
4.2242 | 87500 | 0.0009 | - | - | - |
4.2483 | 88000 | 0.0009 | 0.0004 | 0.7815 | 0.8555 |
4.2725 | 88500 | 0.0009 | - | - | - |
4.2966 | 89000 | 0.0009 | - | - | - |
4.3207 | 89500 | 0.0009 | - | - | - |
4.3449 | 90000 | 0.0009 | 0.0004 | 0.7797 | 0.8534 |
4.3690 | 90500 | 0.0009 | - | - | - |
4.3932 | 91000 | 0.0009 | - | - | - |
4.4173 | 91500 | 0.0009 | - | - | - |
4.4414 | 92000 | 0.0009 | 0.0004 | 0.7823 | 0.8547 |
4.4656 | 92500 | 0.0009 | - | - | - |
4.4897 | 93000 | 0.0009 | - | - | - |
4.5139 | 93500 | 0.0009 | - | - | - |
4.5380 | 94000 | 0.0009 | 0.0004 | 0.7783 | 0.8535 |
4.5621 | 94500 | 0.0009 | - | - | - |
4.5863 | 95000 | 0.0009 | - | - | - |
4.6104 | 95500 | 0.0009 | - | - | - |
4.6345 | 96000 | 0.0009 | 0.0004 | 0.7811 | 0.8550 |
4.6587 | 96500 | 0.0009 | - | - | - |
4.6828 | 97000 | 0.0009 | - | - | - |
4.7070 | 97500 | 0.0009 | - | - | - |
4.7311 | 98000 | 0.0009 | 0.0004 | 0.7801 | 0.8540 |
4.7552 | 98500 | 0.0009 | - | - | - |
4.7794 | 99000 | 0.0009 | - | - | - |
4.8035 | 99500 | 0.0009 | - | - | - |
4.8277 | 100000 | 0.0009 | 0.0004 | 0.7811 | 0.8544 |
4.8518 | 100500 | 0.0009 | - | - | - |
4.8759 | 101000 | 0.0009 | - | - | - |
4.9001 | 101500 | 0.0009 | - | - | - |
4.9242 | 102000 | 0.0009 | 0.0004 | 0.7805 | 0.8548 |
4.9483 | 102500 | 0.0009 | - | - | - |
4.9725 | 103000 | 0.0009 | - | - | - |
4.9966 | 103500 | 0.0009 | - | - | - |
5.0208 | 104000 | 0.0009 | 0.0004 | 0.7797 | 0.8534 |
5.0449 | 104500 | 0.0009 | - | - | - |
5.0690 | 105000 | 0.0009 | - | - | - |
5.0932 | 105500 | 0.0009 | - | - | - |
5.1173 | 106000 | 0.0009 | 0.0004 | 0.7821 | 0.8555 |
5.1415 | 106500 | 0.0009 | - | - | - |
5.1656 | 107000 | 0.0009 | - | - | - |
5.1897 | 107500 | 0.0009 | - | - | - |
5.2139 | 108000 | 0.0009 | 0.0004 | 0.7816 | 0.8558 |
5.2380 | 108500 | 0.0009 | - | - | - |
5.2621 | 109000 | 0.0009 | - | - | - |
5.2863 | 109500 | 0.0009 | - | - | - |
5.3104 | 110000 | 0.0009 | 0.0004 | 0.7804 | 0.8556 |
5.3346 | 110500 | 0.0009 | - | - | - |
5.3587 | 111000 | 0.0009 | - | - | - |
5.3828 | 111500 | 0.0009 | - | - | - |
5.4070 | 112000 | 0.0009 | 0.0004 | 0.7813 | 0.8548 |
5.4311 | 112500 | 0.0009 | - | - | - |
5.4552 | 113000 | 0.0009 | - | - | - |
5.4794 | 113500 | 0.0009 | - | - | - |
5.5035 | 114000 | 0.0009 | 0.0004 | 0.7823 | 0.8548 |
5.5277 | 114500 | 0.0009 | - | - | - |
5.5518 | 115000 | 0.0009 | - | - | - |
5.5759 | 115500 | 0.0009 | - | - | - |
5.6001 | 116000 | 0.0009 | 0.0004 | 0.7809 | 0.8551 |
5.6242 | 116500 | 0.0009 | - | - | - |
5.6484 | 117000 | 0.0009 | - | - | - |
5.6725 | 117500 | 0.0009 | - | - | - |
5.6966 | 118000 | 0.0009 | 0.0004 | 0.7833 | 0.8557 |
5.7208 | 118500 | 0.0009 | - | - | - |
5.7449 | 119000 | 0.0009 | - | - | - |
5.7690 | 119500 | 0.0009 | - | - | - |
5.7932 | 120000 | 0.0009 | 0.0004 | 0.7842 | 0.8551 |
5.8173 | 120500 | 0.0009 | - | - | - |
5.8415 | 121000 | 0.0009 | - | - | - |
5.8656 | 121500 | 0.0009 | - | - | - |
5.8897 | 122000 | 0.0009 | 0.0004 | 0.7817 | 0.8563 |
5.9139 | 122500 | 0.0009 | - | - | - |
5.9380 | 123000 | 0.0009 | - | - | - |
5.9622 | 123500 | 0.0009 | - | - | - |
5.9863 | 124000 | 0.0009 | 0.0004 | 0.7812 | 0.8559 |
6.0104 | 124500 | 0.0009 | - | - | - |
6.0346 | 125000 | 0.0009 | - | - | - |
6.0587 | 125500 | 0.0009 | - | - | - |
6.0828 | 126000 | 0.0009 | 0.0004 | 0.7821 | 0.8558 |
6.1070 | 126500 | 0.0009 | - | - | - |
6.1311 | 127000 | 0.0009 | - | - | - |
6.1553 | 127500 | 0.0009 | - | - | - |
6.1794 | 128000 | 0.0009 | 0.0004 | 0.7829 | 0.8548 |
6.2035 | 128500 | 0.0009 | - | - | - |
6.2277 | 129000 | 0.0009 | - | - | - |
6.2518 | 129500 | 0.0009 | - | - | - |
6.2759 | 130000 | 0.0009 | 0.0004 | 0.7805 | 0.8549 |
6.3001 | 130500 | 0.0009 | - | - | - |
6.3242 | 131000 | 0.0009 | - | - | - |
6.3484 | 131500 | 0.0009 | - | - | - |
6.3725 | 132000 | 0.0009 | 0.0004 | 0.7807 | 0.8563 |
6.3966 | 132500 | 0.0009 | - | - | - |
6.4208 | 133000 | 0.0009 | - | - | - |
6.4449 | 133500 | 0.0009 | - | - | - |
6.4691 | 134000 | 0.0009 | 0.0004 | 0.7829 | 0.8555 |
6.4932 | 134500 | 0.0009 | - | - | - |
6.5173 | 135000 | 0.0009 | - | - | - |
6.5415 | 135500 | 0.0009 | - | - | - |
6.5656 | 136000 | 0.0009 | 0.0004 | 0.7819 | 0.8550 |
6.5897 | 136500 | 0.0009 | - | - | - |
6.6139 | 137000 | 0.0009 | - | - | - |
6.6380 | 137500 | 0.0009 | - | - | - |
6.6622 | 138000 | 0.0009 | 0.0004 | 0.7800 | 0.8548 |
6.6863 | 138500 | 0.0009 | - | - | - |
6.7104 | 139000 | 0.0009 | - | - | - |
6.7346 | 139500 | 0.0009 | - | - | - |
6.7587 | 140000 | 0.0009 | 0.0004 | 0.7817 | 0.8555 |
6.7829 | 140500 | 0.0009 | - | - | - |
6.8070 | 141000 | 0.0009 | - | - | - |
6.8311 | 141500 | 0.0009 | - | - | - |
6.8553 | 142000 | 0.0009 | 0.0004 | 0.7812 | 0.8556 |
6.8794 | 142500 | 0.0009 | - | - | - |
6.9035 | 143000 | 0.0009 | - | - | - |
6.9277 | 143500 | 0.0009 | - | - | - |
6.9518 | 144000 | 0.0009 | 0.0004 | 0.7830 | 0.8559 |
6.9760 | 144500 | 0.0009 | - | - | - |
7.0001 | 145000 | 0.0009 | - | - | - |
7.0242 | 145500 | 0.0009 | - | - | - |
7.0484 | 146000 | 0.0009 | 0.0004 | 0.7809 | 0.8561 |
7.0725 | 146500 | 0.0009 | - | - | - |
7.0966 | 147000 | 0.0009 | - | - | - |
7.1208 | 147500 | 0.0009 | - | - | - |
7.1449 | 148000 | 0.0009 | 0.0004 | 0.7798 | 0.8560 |
7.1691 | 148500 | 0.0009 | - | - | - |
7.1932 | 149000 | 0.0009 | - | - | - |
7.2173 | 149500 | 0.0009 | - | - | - |
7.2415 | 150000 | 0.0009 | 0.0004 | 0.7815 | 0.8559 |
7.2656 | 150500 | 0.0009 | - | - | - |
7.2898 | 151000 | 0.0009 | - | - | - |
7.3139 | 151500 | 0.0009 | - | - | - |
7.3380 | 152000 | 0.0009 | 0.0004 | 0.7828 | 0.8562 |
7.3622 | 152500 | 0.0009 | - | - | - |
7.3863 | 153000 | 0.0009 | - | - | - |
7.4104 | 153500 | 0.0009 | - | - | - |
7.4346 | 154000 | 0.0009 | 0.0004 | 0.7837 | 0.8565 |
7.4587 | 154500 | 0.0009 | - | - | - |
7.4829 | 155000 | 0.0009 | - | - | - |
7.5070 | 155500 | 0.0009 | - | - | - |
7.5311 | 156000 | 0.0009 | 0.0004 | 0.7819 | 0.8565 |
7.5553 | 156500 | 0.0009 | - | - | - |
7.5794 | 157000 | 0.0009 | - | - | - |
7.6036 | 157500 | 0.0009 | - | - | - |
7.6277 | 158000 | 0.0009 | 0.0004 | 0.7818 | 0.8557 |
7.6518 | 158500 | 0.0009 | - | - | - |
7.6760 | 159000 | 0.0009 | - | - | - |
7.7001 | 159500 | 0.0009 | - | - | - |
7.7242 | 160000 | 0.0009 | 0.0004 | 0.7811 | 0.8557 |
7.7484 | 160500 | 0.0009 | - | - | - |
7.7725 | 161000 | 0.0009 | - | - | - |
7.7967 | 161500 | 0.0009 | - | - | - |
7.8208 | 162000 | 0.0009 | 0.0004 | 0.7821 | 0.8566 |
7.8449 | 162500 | 0.0009 | - | - | - |
7.8691 | 163000 | 0.0009 | - | - | - |
7.8932 | 163500 | 0.0009 | - | - | - |
7.9174 | 164000 | 0.0009 | 0.0004 | 0.7815 | 0.8564 |
7.9415 | 164500 | 0.0009 | - | - | - |
7.9656 | 165000 | 0.0009 | - | - | - |
7.9898 | 165500 | 0.0009 | - | - | - |
Framework Versions
- Python: 3.10.16
- Sentence Transformers: 3.3.1
- Transformers: 4.51.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for jvanhoof/all-miniLM-L6-v2-BGEs-distilled-en-ja-64K-vocab-mean-21M-test
Base model
sentence-transformers/all-MiniLM-L6-v2Evaluation results
- Pearson Cosine on JSTSself-reported0.823
- Spearman Cosine on JSTSself-reported0.782
- Pearson Cosine on stsb multi mt enself-reported0.836
- Spearman Cosine on stsb multi mt enself-reported0.856