|
--- |
|
license: mit |
|
base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: CRAFT_PubMedBERT_NER |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# CRAFT_PubMedBERT_NER |
|
|
|
This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1043 |
|
- Seqeval classification report: precision recall f1-score support |
|
|
|
CHEBI 0.71 0.73 0.72 616 |
|
CL 0.85 0.89 0.87 1740 |
|
GGP 0.84 0.76 0.80 611 |
|
GO 0.89 0.90 0.90 3810 |
|
SO 0.81 0.83 0.82 8854 |
|
Taxon 0.58 0.60 0.59 284 |
|
|
|
micro avg 0.82 0.84 0.83 15915 |
|
macro avg 0.78 0.79 0.78 15915 |
|
weighted avg 0.82 0.84 0.83 15915 |
|
|
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Seqeval classification report | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| |
|
| No log | 1.0 | 347 | 0.1260 | precision recall f1-score support |
|
|
|
CHEBI 0.66 0.61 0.63 616 |
|
CL 0.81 0.86 0.83 1740 |
|
GGP 0.74 0.54 0.63 611 |
|
GO 0.86 0.89 0.87 3810 |
|
SO 0.73 0.78 0.76 8854 |
|
Taxon 0.47 0.57 0.52 284 |
|
|
|
micro avg 0.76 0.80 0.78 15915 |
|
macro avg 0.71 0.71 0.71 15915 |
|
weighted avg 0.76 0.80 0.78 15915 |
|
| |
|
| 0.182 | 2.0 | 695 | 0.1089 | precision recall f1-score support |
|
|
|
CHEBI 0.69 0.74 0.71 616 |
|
CL 0.84 0.88 0.86 1740 |
|
GGP 0.83 0.74 0.78 611 |
|
GO 0.88 0.90 0.89 3810 |
|
SO 0.79 0.82 0.81 8854 |
|
Taxon 0.57 0.60 0.58 284 |
|
|
|
micro avg 0.81 0.84 0.82 15915 |
|
macro avg 0.77 0.78 0.77 15915 |
|
weighted avg 0.81 0.84 0.82 15915 |
|
| |
|
| 0.0443 | 3.0 | 1041 | 0.1043 | precision recall f1-score support |
|
|
|
CHEBI 0.71 0.73 0.72 616 |
|
CL 0.85 0.89 0.87 1740 |
|
GGP 0.84 0.76 0.80 611 |
|
GO 0.89 0.90 0.90 3810 |
|
SO 0.81 0.83 0.82 8854 |
|
Taxon 0.58 0.60 0.59 284 |
|
|
|
micro avg 0.82 0.84 0.83 15915 |
|
macro avg 0.78 0.79 0.78 15915 |
|
weighted avg 0.82 0.84 0.83 15915 |
|
| |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|