CRAFT_PubMedBERT_NER
This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the None dataset. It achieves the following results on the evaluation set:
Loss: 0.1043
Seqeval classification report: precision recall f1-score support
CHEBI 0.71 0.73 0.72 616 CL 0.85 0.89 0.87 1740 GGP 0.84 0.76 0.80 611 GO 0.89 0.90 0.90 3810 SO 0.81 0.83 0.82 8854 Taxon 0.58 0.60 0.59 284
micro avg 0.82 0.84 0.83 15915 macro avg 0.78 0.79 0.78 15915
weighted avg 0.82 0.84 0.83 15915
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Seqeval classification report |
---|---|---|---|---|
No log | 1.0 | 347 | 0.1260 | precision recall f1-score support |
CHEBI 0.66 0.61 0.63 616
CL 0.81 0.86 0.83 1740
GGP 0.74 0.54 0.63 611
GO 0.86 0.89 0.87 3810
SO 0.73 0.78 0.76 8854
Taxon 0.47 0.57 0.52 284
micro avg 0.76 0.80 0.78 15915 macro avg 0.71 0.71 0.71 15915 weighted avg 0.76 0.80 0.78 15915 | | 0.182 | 2.0 | 695 | 0.1089 | precision recall f1-score support
CHEBI 0.69 0.74 0.71 616
CL 0.84 0.88 0.86 1740
GGP 0.83 0.74 0.78 611
GO 0.88 0.90 0.89 3810
SO 0.79 0.82 0.81 8854
Taxon 0.57 0.60 0.58 284
micro avg 0.81 0.84 0.82 15915 macro avg 0.77 0.78 0.77 15915 weighted avg 0.81 0.84 0.82 15915 | | 0.0443 | 3.0 | 1041 | 0.1043 | precision recall f1-score support
CHEBI 0.71 0.73 0.72 616
CL 0.85 0.89 0.87 1740
GGP 0.84 0.76 0.80 611
GO 0.89 0.90 0.90 3810
SO 0.81 0.83 0.82 8854
Taxon 0.58 0.60 0.59 284
micro avg 0.82 0.84 0.83 15915 macro avg 0.78 0.79 0.78 15915 weighted avg 0.82 0.84 0.83 15915 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 5