johannawawi's picture
johannawawi/v4_balanced_dataset_fine-tuning-java-indo-sentiment-analysist-3-class
a84c7e4 verified
metadata
library_name: transformers
license: mit
base_model: w11wo/indonesian-roberta-base-sentiment-classifier
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: results_final
    results: []

results_final

This model is a fine-tuned version of w11wo/indonesian-roberta-base-sentiment-classifier on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0710
  • Accuracy: 0.9073
  • F1 Macro: 0.9073
  • F1 Weighted: 0.9073
  • Precision Macro: 0.9074
  • Recall Macro: 0.9072
  • Precision Weighted: 0.9074
  • Recall Weighted: 0.9073

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8.550119000665763e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 13

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro F1 Weighted Precision Macro Recall Macro Precision Weighted Recall Weighted
0.0 1.8182 500 1.0710 0.9073 0.9073 0.9073 0.9074 0.9072 0.9074 0.9073
0.0281 3.6364 1000 1.0771 0.8927 0.8930 0.8931 0.8945 0.8927 0.8946 0.8927
0.0103 5.4545 1500 0.9934 0.8909 0.8910 0.8910 0.8914 0.8909 0.8915 0.8909
0.0763 7.2727 2000 0.8136 0.8891 0.8889 0.8890 0.8889 0.8890 0.8890 0.8891
0.0468 9.0909 2500 0.8967 0.8836 0.8835 0.8835 0.8855 0.8834 0.8854 0.8836
0.0429 10.9091 3000 0.9118 0.8909 0.8909 0.8909 0.8914 0.8908 0.8914 0.8909
0.0374 12.7273 3500 0.9128 0.8964 0.8962 0.8963 0.8965 0.8962 0.8965 0.8964

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 2.14.4
  • Tokenizers 0.21.1