File size: 3,003 Bytes
a84c7e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
library_name: transformers
license: mit
base_model: w11wo/indonesian-roberta-base-sentiment-classifier
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: results_final
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# results_final

This model is a fine-tuned version of [w11wo/indonesian-roberta-base-sentiment-classifier](https://huggingface.co/w11wo/indonesian-roberta-base-sentiment-classifier) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0710
- Accuracy: 0.9073
- F1 Macro: 0.9073
- F1 Weighted: 0.9073
- Precision Macro: 0.9074
- Recall Macro: 0.9072
- Precision Weighted: 0.9074
- Recall Weighted: 0.9073

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8.550119000665763e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 13

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy | F1 Macro | F1 Weighted | Precision Macro | Recall Macro | Precision Weighted | Recall Weighted |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:--------:|:-----------:|:---------------:|:------------:|:------------------:|:---------------:|
| 0.0           | 1.8182  | 500  | 1.0710          | 0.9073   | 0.9073   | 0.9073      | 0.9074          | 0.9072       | 0.9074             | 0.9073          |
| 0.0281        | 3.6364  | 1000 | 1.0771          | 0.8927   | 0.8930   | 0.8931      | 0.8945          | 0.8927       | 0.8946             | 0.8927          |
| 0.0103        | 5.4545  | 1500 | 0.9934          | 0.8909   | 0.8910   | 0.8910      | 0.8914          | 0.8909       | 0.8915             | 0.8909          |
| 0.0763        | 7.2727  | 2000 | 0.8136          | 0.8891   | 0.8889   | 0.8890      | 0.8889          | 0.8890       | 0.8890             | 0.8891          |
| 0.0468        | 9.0909  | 2500 | 0.8967          | 0.8836   | 0.8835   | 0.8835      | 0.8855          | 0.8834       | 0.8854             | 0.8836          |
| 0.0429        | 10.9091 | 3000 | 0.9118          | 0.8909   | 0.8909   | 0.8909      | 0.8914          | 0.8908       | 0.8914             | 0.8909          |
| 0.0374        | 12.7273 | 3500 | 0.9128          | 0.8964   | 0.8962   | 0.8963      | 0.8965          | 0.8962       | 0.8965             | 0.8964          |


### Framework versions

- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1