jatwell's picture
End of training
74448d9 verified
metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.85

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9067
  • Accuracy: 0.85

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1252 1.0 113 2.0411 0.53
1.4215 2.0 226 1.4209 0.59
1.1321 3.0 339 1.1114 0.69
0.7741 4.0 452 0.8278 0.77
0.6293 5.0 565 0.6990 0.8
0.3647 6.0 678 0.5927 0.81
0.3117 7.0 791 0.5893 0.82
0.0576 8.0 904 0.6503 0.83
0.1001 9.0 1017 0.6865 0.83
0.0135 10.0 1130 0.7741 0.81
0.0074 11.0 1243 0.8297 0.84
0.006 12.0 1356 0.8046 0.85
0.0047 13.0 1469 0.8521 0.85
0.0043 14.0 1582 0.9075 0.85
0.0033 15.0 1695 0.9065 0.85
0.0034 16.0 1808 0.9203 0.85
0.0032 17.0 1921 0.9036 0.84
0.003 18.0 2034 0.9170 0.85
0.0031 19.0 2147 0.9072 0.85
0.0031 20.0 2260 0.9067 0.85

Framework versions

  • Transformers 4.52.0.dev0
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1