distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.9067
- Accuracy: 0.85
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.1252 | 1.0 | 113 | 2.0411 | 0.53 |
1.4215 | 2.0 | 226 | 1.4209 | 0.59 |
1.1321 | 3.0 | 339 | 1.1114 | 0.69 |
0.7741 | 4.0 | 452 | 0.8278 | 0.77 |
0.6293 | 5.0 | 565 | 0.6990 | 0.8 |
0.3647 | 6.0 | 678 | 0.5927 | 0.81 |
0.3117 | 7.0 | 791 | 0.5893 | 0.82 |
0.0576 | 8.0 | 904 | 0.6503 | 0.83 |
0.1001 | 9.0 | 1017 | 0.6865 | 0.83 |
0.0135 | 10.0 | 1130 | 0.7741 | 0.81 |
0.0074 | 11.0 | 1243 | 0.8297 | 0.84 |
0.006 | 12.0 | 1356 | 0.8046 | 0.85 |
0.0047 | 13.0 | 1469 | 0.8521 | 0.85 |
0.0043 | 14.0 | 1582 | 0.9075 | 0.85 |
0.0033 | 15.0 | 1695 | 0.9065 | 0.85 |
0.0034 | 16.0 | 1808 | 0.9203 | 0.85 |
0.0032 | 17.0 | 1921 | 0.9036 | 0.84 |
0.003 | 18.0 | 2034 | 0.9170 | 0.85 |
0.0031 | 19.0 | 2147 | 0.9072 | 0.85 |
0.0031 | 20.0 | 2260 | 0.9067 | 0.85 |
Framework versions
- Transformers 4.52.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 18
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for jatwell/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubert