File size: 5,489 Bytes
f7d3dfe ff49ff1 f7d3dfe ff49ff1 064d4b6 ff49ff1 f7d3dfe ff49ff1 f7d3dfe df976b5 3b66a55 f7d3dfe ff49ff1 1dab898 f7d3dfe 7c509f6 f7d3dfe ff49ff1 f7d3dfe ff49ff1 064d4b6 ff49ff1 064d4b6 ff49ff1 064d4b6 ff49ff1 064d4b6 ff49ff1 064d4b6 ff49ff1 064d4b6 ff49ff1 064d4b6 7c509f6 064d4b6 3b66a55 064d4b6 ff49ff1 1dab898 064d4b6 7c509f6 064d4b6 7c509f6 064d4b6 ff49ff1 1dab898 064d4b6 7c509f6 064d4b6 3b66a55 064d4b6 ff49ff1 064d4b6 ff49ff1 064d4b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
license: apache-2.0
tags:
- biology
- chemistry
- biomolecular-structure-prediction
- IntelliFold
---

# IntelliFold: A Controllable Foundation Model for General and Specialized Biomolecular Structure Prediction.
[](https://huggingface.co/GAGABIG/CNN)
[](https://pypi.org/project/intellifold/)
[](LICENSE)
[](#contact-us)
<div align="center" style="margin: 20px 0;">
<span style="margin: 0 10px;">β‘ <a href="https://server.intfold.com">IntelliFold Server</a></span>
• <span style="margin: 0 10px;">π <a href="https://arxiv.org/abs/2507.02025">Technical Report</a></span>
</div>

## π Quick Start
To quickly get started with IntelliFold, you can use the following commands:
```bash
# Install IntelliFold from PyPI
pip install intellifold
# Run inference with an example YAML file
intellifold predict ./examples/5S8I_A.yaml --out_dir ./output
```
## βοΈ Installation
To more complete installation instructions and usage, please refer to the [Installation Guide](https://github.com/IntelliGen-AI/IntelliFold/blob/main/docs/installation.md).
## π Inference
1. **Prepare Input File**: Create a YAML file with your sequences following our [input format specification](https://github.com/IntelliGen-AI/IntelliFold/blob/main/docs/input_yaml_format.md)
2. **Run Prediction**:
```bash
intellifold predict your_input.yaml --out_dir ./results
```
3. **Check Results**: Find predicted structures and confidence scores in the output directory, you can also check the section of **output format** in [output documentation](https://github.com/IntelliGen-AI/IntelliFold/blob/main/docs/input_yaml_format.md#output-format).
4. **Optional Optimization**: Enable [custom kernels](https://github.com/IntelliGen-AI/IntelliFold/blob/main/docs/kernels.md) for faster inference and reduced memory usage
For comprehensive usage instructions and examples, refer to the [Usage Guide](https://github.com/IntelliGen-AI/IntelliFold/blob/main/docs/usage.md).
## π Benchmarking
To comprehensively evaluate the performance of To quickly get started with IntelliFold, you can use the following commands:
, we conducted a rigorous evaluation on [FoldBench](https://github.com/BEAM-Labs/FoldBench). We compared IntelliFold against several leading methods, including [Boltz-1,2](https://github.com/jwohlwend/boltz), [Chai-1](https://github.com/chaidiscovery/chai-lab), [Protenix](https://github.com/bytedance/Protenix) and [Alphafold3](https://github.com/google-deepmind/alphafold3).
For more details on the benchmarking process and results, please refer to our [Technical Report](https://arxiv.org/abs/2507.02025).

## π IntelliFold Server
**We highly recommend using the [IntelliFold Server](https://server.intfold.com) for the most accurate, complete, and convenient biomolecular structure predictions.** It requires no installation and provides an intuitive web interface to submit your sequences and visualize results directly in your browser. The server runs the **full, optimized, latest** IntelliFold implementation for optimal performance.

## π Citation
If you use IntelliFold in your research, please cite our paper:
```
@misc{theintfoldteam2025intfoldcontrollablefoundationmodel,
title={IntFold: A Controllable Foundation Model for General and Specialized Biomolecular Structure Prediction},
author={The IntFold Team and Leon Qiao and Wayne Bai and He Yan and Gary Liu and Nova Xi and Xiang Zhang},
year={2025},
eprint={2507.02025},
archivePrefix={arXiv},
primaryClass={q-bio.BM},
url={https://arxiv.org/abs/2507.02025}
}
```
## π Acknowledgements
- The implementation of **fast layernorm operators** is inspired by [OneFlow](https://github.com/Oneflow-Inc/oneflow) and [FastFold](https://github.com/hpcaitech/FastFold), following [Protenix](https://github.com/bytedance/Protenix)'s usage.
- Many components in `intellifold/openfold/` are adapted from [OpenFold](https://github.com/aqlaboratory/openfold), with substantial modifications and improvements by our team (except for the `LayerNorm` part).
- This repository, the implementation of **Inference Data Pipeline**(Data/Feature Processing and MSA generation tasks) referred to [Boltz-1](https://github.com/jwohlwend/boltz), and modify some codes to adapt to the input of our model.
## βοΈ License
The IntelliFold project, including code and model parameters, is made available under the [Apache 2.0 License](https://github.com/IntelliGen-AI/IntelliFold/blob/main/LICENSE), it is free for both academic research and commercial use.
## π¬ Contact Us
If you have any questions or are interested in collaboration, please feel free to contact us at [email protected]. |