FuxuLiu commited on
Commit
3b66a55
Β·
verified Β·
1 Parent(s): 1dab898

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -4
README.md CHANGED
@@ -18,7 +18,7 @@ tags:
18
 
19
  <div align="center" style="margin: 20px 0;">
20
  <span style="margin: 0 10px;">⚑ <a href="https://server.intfold.com">IntFold Server</a></span>
21
- &bull; <span style="margin: 0 10px;">πŸ“„ <a href="https://intfold-server-dev.oss-cn-hongkong.aliyuncs.com/IntFold_Technical_Report.pdf">Technical Report</a></span>
22
  </div>
23
 
24
 
@@ -59,7 +59,7 @@ For comprehensive usage instructions and examples, refer to the [Usage Guide](ht
59
  ## πŸ“Š Benchmarking
60
  To comprehensively evaluate the performance of IntFold, we conducted a rigorous evaluation on [FoldBench](https://github.com/BEAM-Labs/FoldBench). We compared IntFold against several leading methods, including [Boltz-1,2](https://github.com/jwohlwend/boltz), [Chai-1](https://github.com/chaidiscovery/chai-lab), [Protenix](https://github.com/bytedance/Protenix) and [Alphafold3](https://github.com/google-deepmind/alphafold3).
61
 
62
- For more details on the benchmarking process and results, please refer to our [Technical Report](https://intfold-server-dev.oss-cn-hongkong.aliyuncs.com/IntFold_Technical_Report.pdf).
63
 
64
  ![Benchmark Metrics](https://raw.githubusercontent.com/IntelliGen-AI/IntFold/main/assets/intfold_metrics.png)
65
 
@@ -75,8 +75,17 @@ For more details on the benchmarking process and results, please refer to our [T
75
 
76
  If you use IntFold in your research, please cite our paper:
77
 
78
- the official citation will be available soon.
79
-
 
 
 
 
 
 
 
 
 
80
 
81
  ## πŸ”— Acknowledgements
82
 
 
18
 
19
  <div align="center" style="margin: 20px 0;">
20
  <span style="margin: 0 10px;">⚑ <a href="https://server.intfold.com">IntFold Server</a></span>
21
+ &bull; <span style="margin: 0 10px;">πŸ“„ <a href="https://arxiv.org/abs/2507.02025">Technical Report</a></span>
22
  </div>
23
 
24
 
 
59
  ## πŸ“Š Benchmarking
60
  To comprehensively evaluate the performance of IntFold, we conducted a rigorous evaluation on [FoldBench](https://github.com/BEAM-Labs/FoldBench). We compared IntFold against several leading methods, including [Boltz-1,2](https://github.com/jwohlwend/boltz), [Chai-1](https://github.com/chaidiscovery/chai-lab), [Protenix](https://github.com/bytedance/Protenix) and [Alphafold3](https://github.com/google-deepmind/alphafold3).
61
 
62
+ For more details on the benchmarking process and results, please refer to our [Technical Report](https://arxiv.org/abs/2507.02025).
63
 
64
  ![Benchmark Metrics](https://raw.githubusercontent.com/IntelliGen-AI/IntFold/main/assets/intfold_metrics.png)
65
 
 
75
 
76
  If you use IntFold in your research, please cite our paper:
77
 
78
+ ```
79
+ @misc{theintfoldteam2025intfoldcontrollablefoundationmodel,
80
+ title={IntFold: A Controllable Foundation Model for General and Specialized Biomolecular Structure Prediction},
81
+ author={The IntFold Team and Leon Qiao and Wayne Bai and He Yan and Gary Liu and Nova Xi and Xiang Zhang},
82
+ year={2025},
83
+ eprint={2507.02025},
84
+ archivePrefix={arXiv},
85
+ primaryClass={q-bio.BM},
86
+ url={https://arxiv.org/abs/2507.02025}
87
+ }
88
+ ```
89
 
90
  ## πŸ”— Acknowledgements
91