FuxuLiu commited on
Commit
064d4b6
Β·
verified Β·
1 Parent(s): f7d3dfe

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -6
README.md CHANGED
@@ -6,9 +6,10 @@ tags:
6
  - IntFold
7
  - biomolecular-structure-prediction
8
  ---
9
- <!-- ![IntFold Cover](assets/intfold-cover.png) -->
10
 
11
- # IntFold
 
 
12
  [![HuggingFace Models](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Models-yellow)](https://huggingface.co/GAGABIG/CNN)
13
  [![PyPI](https://img.shields.io/pypi/v/intfold)](https://pypi.org/project/intfold/)
14
  [![License](https://img.shields.io/badge/license-Apache%202.0-blue)](LICENSE)
@@ -17,12 +18,11 @@ tags:
17
 
18
  <div align="center" style="margin: 20px 0;">
19
  <span style="margin: 0 10px;">⚑ <a href="https://server.intfold.com">IntFold Server</a></span>
20
- &bull; <span style="margin: 0 10px;">πŸ“„ <a href="xxxxx">Technical Report</a></span>
21
  </div>
22
 
23
 
24
- **IntFold:** An open-source PyTorch implementation of [AlphaFold 3](https://www.nature.com/articles/s41586-024-07487-w). Predict biomolecular structures with state-of-the-art accuracy in a flexible framework.
25
-
26
 
27
 
28
  ## πŸš€ Quick Start
@@ -33,4 +33,63 @@ To quickly get started with IntFold, you can use the following commands:
33
  pip install intfold
34
  # Run inference with an example YAML file
35
  intfold predict ./examples/5S8I_A.yaml --out_dir ./output
36
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  - IntFold
7
  - biomolecular-structure-prediction
8
  ---
 
9
 
10
+ ![IntFold Cover](https://github.com/IntelliGen-AI/IntFold/assets/intfold-cover.png)
11
+
12
+ # IntFold: A Controllable Foundation Model for General and Specialized Biomolecular Structure Prediction.
13
  [![HuggingFace Models](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Models-yellow)](https://huggingface.co/GAGABIG/CNN)
14
  [![PyPI](https://img.shields.io/pypi/v/intfold)](https://pypi.org/project/intfold/)
15
  [![License](https://img.shields.io/badge/license-Apache%202.0-blue)](LICENSE)
 
18
 
19
  <div align="center" style="margin: 20px 0;">
20
  <span style="margin: 0 10px;">⚑ <a href="https://server.intfold.com">IntFold Server</a></span>
21
+ &bull; <span style="margin: 0 10px;">πŸ“„ <a href="https://intfold-server-dev.oss-cn-hongkong.aliyuncs.com/IntFold_Technical_Report.pdf">Technical Report</a></span>
22
  </div>
23
 
24
 
25
+ ![IntFold Model](https://github.com/IntelliGen-AI/IntFold/assets/Intfold-Model-Arc.png)
 
26
 
27
 
28
  ## πŸš€ Quick Start
 
33
  pip install intfold
34
  # Run inference with an example YAML file
35
  intfold predict ./examples/5S8I_A.yaml --out_dir ./output
36
+ ```
37
+
38
+ ## βš™οΈ Installation
39
+
40
+ To more complete installation instructions and usage, please refer to the [Installation Guide](https://github.com/IntelliGen-AI/IntFold/docs/installation.md).
41
+
42
+
43
+ ## πŸ” Inference
44
+
45
+ 1. **Prepare Input File**: Create a YAML file with your sequences following our [input format specification](https://github.com/IntelliGen-AI/IntFold/docs/input_yaml_format.md)
46
+
47
+ 2. **Run Prediction**:
48
+ ```bash
49
+ intfold predict your_input.yaml --out_dir ./results
50
+ ```
51
+
52
+ 3. **Check Results**: Find predicted structures and confidence scores in the output directory, you can also check the section of **output format** in [output documentation](https://github.com/IntelliGen-AI/IntFold/docs/input_yaml_format.md#output-format).
53
+
54
+ 4. **Optional Optimization**: Enable [custom kernels](https://github.com/IntelliGen-AI/IntFold/docs/kernels.md) for faster inference and reduced memory usage
55
+
56
+ For comprehensive usage instructions and examples, refer to the [Usage Guide](https://github.com/IntelliGen-AI/IntFold/docs/usage.md).
57
+
58
+
59
+ ## πŸ“Š Benchmarking
60
+ To comprehensively evaluate the performance of IntFold, we conducted a rigorous evaluation on [FoldBench](https://github.com/BEAM-Labs/FoldBench). We compared IntFold against several leading methods, including [Boltz-1,2](https://github.com/jwohlwend/boltz), [Chai-1](https://github.com/chaidiscovery/chai-lab), [Protenix](https://github.com/bytedance/Protenix) and [Alphafold3](https://github.com/google-deepmind/alphafold3).
61
+
62
+ For more details on the benchmarking process and results, please refer to our [Technical Report](https://intfold-server-dev.oss-cn-hongkong.aliyuncs.com/IntFold_Technical_Report.pdf).
63
+
64
+ ![Benchmark Metrics](https://github.com/IntelliGen-AI/IntFold/assets/intfold_metrics.png)
65
+
66
+
67
+ ## 🌐 IntFold Server
68
+
69
+ **We highly recommend using the [IntFold Server](https://server.intfold.com) for the most accurate, complete, and convenient biomolecular structure predictions.** It requires no installation and provides an intuitive web interface to submit your sequences and visualize results directly in your browser. The server runs the **full, optimized, latest** IntFold implementation for optimal performance.
70
+
71
+ ![IntFold Server](https://github.com/IntelliGen-AI/IntFold/assets/intfold-server-screenshot.png)
72
+
73
+
74
+ ## πŸ“œ Citation
75
+
76
+ If you use IntFold in your research, please cite our paper:
77
+
78
+ the official citation will be available soon.
79
+
80
+
81
+ ## πŸ”— Acknowledgements
82
+
83
+ - The implementation of **fast layernorm operators** is inspired by [OneFlow](https://github.com/Oneflow-Inc/oneflow) and [FastFold](https://github.com/hpcaitech/FastFold), following [Protenix](https://github.com/bytedance/Protenix)'s usage.
84
+ - Many components in `intfold/openfold/` are adapted from [OpenFold](https://github.com/aqlaboratory/openfold), with substantial modifications and improvements by our team (except for the `LayerNorm` part).
85
+ - This repository, the implementation of **Inference Data Pipeline**(Data/Feature Processing and MSA generation tasks) referred to [Boltz-1](https://github.com/jwohlwend/boltz), and modify some codes to adapt to the input of our model.
86
+
87
+
88
+
89
+ ## βš–οΈ License
90
+
91
+ The IntFold project, including code and model parameters, is made available under the [Apache 2.0 License](https://github.com/IntelliGen-AI/IntFold/LICENSE), it is free for both academic research and commercial use.
92
+
93
+ ## πŸ“¬ Contact Us
94
+
95
+ If you have any questions or are interested in collaboration, please feel free to contact us at [email protected].