huihui-ai's picture
Adding Evaluation Results
159102c verified
|
raw
history blame
5.28 kB
metadata
language:
  - en
license: apache-2.0
library_name: transformers
tags:
  - chat
  - abliterated
  - uncensored
base_model:
  - huihui-ai/QwQ-32B-Preview-abliterated
  - huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated
license_link: https://huggingface.co/huihui-ai/QwQ-32B-Coder-Fusion-9010/blob/main/LICENSE
pipeline_tag: text-generation
model-index:
  - name: QwQ-32B-Coder-Fusion-9010
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 57.78
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/QwQ-32B-Coder-Fusion-9010
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 53.02
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/QwQ-32B-Coder-Fusion-9010
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 40.26
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/QwQ-32B-Coder-Fusion-9010
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 14.88
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/QwQ-32B-Coder-Fusion-9010
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 19.52
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/QwQ-32B-Coder-Fusion-9010
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 51.11
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/QwQ-32B-Coder-Fusion-9010
          name: Open LLM Leaderboard

huihui-ai/QwQ-32B-Coder-Fusion-9010

Overview

QwQ-32B-Coder-Fusion-9010 is a mixed model that combines the strengths of two powerful Qwen-based models: huihui-ai/QwQ-32B-Preview-abliterated and huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated.
The weights are blended in a 9:1 ratio, with 90% of the weights from the abliterated QwQ-32B-Preview-abliterated and 10% from the abliterated Qwen2.5-Coder-32B-Instruct-abliterated model. Although it's a simple mix, the model is usable, and no gibberish has appeared. This is an experiment. I test the 9:1, 8:2, and 7:3 ratios separately to see how much impact they have on the model.
Now the effective ratios are 9:1, 8:2, and 7:3. Any other ratios (6:4,5:5) would result in mixed or unclear expressions.

Model Details

ollama

You can use huihui_ai/qwq-fusion directly,

ollama run huihui_ai/qwq-fusion

Other proportions can be obtained by visiting huihui_ai/qwq-fusion.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 39.43
IFEval (0-Shot) 57.78
BBH (3-Shot) 53.02
MATH Lvl 5 (4-Shot) 40.26
GPQA (0-shot) 14.88
MuSR (0-shot) 19.52
MMLU-PRO (5-shot) 51.11