File size: 5,282 Bytes
4b09b6b
 
 
159102c
 
4b09b6b
 
 
 
159102c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b09b6b
 
 
 
 
 
 
 
b426ea2
4b09b6b
6d19e27
 
 
7980400
4b09b6b
 
 
 
 
 
 
 
 
f78714a
 
 
 
23f7fe4
f78714a
a09a935
a90d471
159102c
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- chat
- abliterated
- uncensored
base_model:
- huihui-ai/QwQ-32B-Preview-abliterated
- huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated
license_link: https://huggingface.co/huihui-ai/QwQ-32B-Coder-Fusion-9010/blob/main/LICENSE
pipeline_tag: text-generation
model-index:
- name: QwQ-32B-Coder-Fusion-9010
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 57.78
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/QwQ-32B-Coder-Fusion-9010
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 53.02
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/QwQ-32B-Coder-Fusion-9010
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 40.26
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/QwQ-32B-Coder-Fusion-9010
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 14.88
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/QwQ-32B-Coder-Fusion-9010
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 19.52
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/QwQ-32B-Coder-Fusion-9010
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 51.11
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/QwQ-32B-Coder-Fusion-9010
      name: Open LLM Leaderboard
---

# huihui-ai/QwQ-32B-Coder-Fusion-9010


## Overview
`QwQ-32B-Coder-Fusion-9010` is a mixed model that combines the strengths of two powerful Qwen-based models: [huihui-ai/QwQ-32B-Preview-abliterated](https://huggingface.co/huihui-ai/QwQ-32B-Preview-abliterated) and 
[huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated](https://huggingface.co/huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated).   
The weights are blended in a 9:1 ratio, with 90% of the weights from the abliterated QwQ-32B-Preview-abliterated and 10% from the abliterated Qwen2.5-Coder-32B-Instruct-abliterated model.
**Although it's a simple mix, the model is usable, and no gibberish has appeared**.
This is an experiment. I test the [9:1](https://huggingface.co/huihui-ai/QwQ-32B-Coder-Fusion-9010), 
[8:2](https://huggingface.co/huihui-ai/QwQ-32B-Coder-Fusion-8020), 
and [7:3](https://huggingface.co/huihui-ai/QwQ-32B-Coder-Fusion-7030) ratios separately to see how much impact they have on the model.   
Now the effective ratios are 9:1, 8:2, and 7:3. Any other ratios (6:4,5:5) would result in mixed or unclear expressions.

## Model Details
- **Base Models:**
  - [huihui-ai/QwQ-32B-Preview-abliterated](https://huggingface.co/huihui-ai/QwQ-32B-Preview-abliterated) (90%)
  - [huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated](https://huggingface.co/huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated) (10%)
- **Model Size:** 32B parameters
- **Architecture:** Qwen 2.5
- **Mixing Ratio:** 9:1 (QwQ-32B-Preview-abliterated:Qwen2.5-Coder-32B-Instruct-abliterated)

## ollama

You can use [huihui_ai/qwq-fusion](https://ollama.com/huihui_ai/qwq-fusion) directly, 
```
ollama run huihui_ai/qwq-fusion
```

Other proportions can be obtained by visiting [huihui_ai/qwq-fusion](https://ollama.com/huihui_ai/qwq-fusion/tags).

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/huihui-ai__QwQ-32B-Coder-Fusion-9010-details)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |39.43|
|IFEval (0-Shot)    |57.78|
|BBH (3-Shot)       |53.02|
|MATH Lvl 5 (4-Shot)|40.26|
|GPQA (0-shot)      |14.88|
|MuSR (0-shot)      |19.52|
|MMLU-PRO (5-shot)  |51.11|