hosmankarabulut commited on
Commit
6c56080
·
verified ·
1 Parent(s): 20b63ef

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -165
README.md CHANGED
@@ -1,202 +1,117 @@
1
  ---
2
  base_model: unsloth/SmolLM2-1.7B
3
  library_name: peft
 
 
 
 
 
 
4
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
 
135
- ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
 
 
 
 
 
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
 
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
166
 
167
- #### Software
 
 
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
 
 
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
 
 
 
 
 
 
 
 
 
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
 
 
198
 
199
- [More Information Needed]
200
- ### Framework versions
201
 
202
- - PEFT 0.14.0
 
 
 
1
  ---
2
  base_model: unsloth/SmolLM2-1.7B
3
  library_name: peft
4
+ license: apache-2.0
5
+ language:
6
+ - tr
7
+ metrics:
8
+ - bleu 0.0406
9
+ - bertscore 0.5286
10
  ---
11
+ +---------------------+--------+
12
+ | Metrik | Değer |
13
+ +---------------------+--------+
14
+ | ROUGE-1 | 0.2439 |
15
+ | ROUGE-2 | 0.1303 |
16
+ | ROUGE-L | 0.2147 |
17
+ | BLEU | 0.0406 |
18
+ | METEOR | 0.2262 |
19
+ | BERTScore Precision | 0.5286 |
20
+ | BERTScore Recall | 0.5834 |
21
+ | BERTScore F1 | 0.553 |
22
+ +---------------------+--------+
23
+
24
+ ✅ Model evaluation is complete and all results are logged to `wandb`.
25
 
26
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ # Model Card for SmolLM2-Ziraat-Turkish-v1
29
 
30
+ <!-- Türkçe versiyonu aşağıda yer almaktadır. -->
31
 
32
+ ## 🧠 Model Summary
33
 
34
+ **SmolLM2-Ziraat-Turkish-v1** is a fine-tuned version of the [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B) model, trained using [Unsloth](https://github.com/unslothai/unsloth) and PEFT (Parameter-Efficient Fine-Tuning). This model has been tailored for Turkish language tasks with a focus on agriculture, finance, and general-purpose conversation.
35
 
36
+ ## 🇹🇷 Model Özeti
37
 
38
+ **SmolLM2-Ziraat-Turkish-v1**, [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B) tabanlı bir model olup, [Unsloth](https://github.com/unslothai/unsloth) ve PEFT (Parameter-Efficient Fine-Tuning) yöntemleriyle Türkçe diline yönelik olarak eğitilmiştir. Tarım, finans ve genel sohbet amaçlı kullanım senaryoları için optimize edilmiştir.
39
 
40
+ ---
 
 
 
 
41
 
42
+ ## 🔍 Model Details / Model Detayları
43
 
44
+ - **Developed by / Geliştiren:** [hosmankarabulut](https://huggingface.co/hosmankarabulut)
45
+ - **Model type / Model türü:** Causal Language Model (AutoRegressive)
46
+ - **Language / Dil:** Turkish (Türkçe)
47
+ - **License / Lisans:** apache-2.0
48
+ - **Fine-tuned with / Eğitim Aracı:** [Unsloth](https://github.com/unslothai/unsloth) + PEFT
49
+ - **Base model / Taban model:** [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B)
50
 
51
+ ---
52
 
53
+ ## 🔗 Sources / Kaynaklar
54
 
55
+ - **Model Repository / Model Deposu:** [https://huggingface.co/hosmankarabulut/SmolLM2-Ziraat-Turkish-v1](https://huggingface.co/hosmankarabulut/SmolLM2-Ziraat-Turkish-v1)
56
+ - **Base model / Taban model:** [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B)
57
 
58
+ ---
59
 
60
+ ## Intended Uses / Amaçlanan Kullanım
61
 
62
+ - Turkish chatbots, Q&A systems
63
+ - Agricultural and financial assistants
64
+ - General-purpose Turkish LLMs
65
 
66
+ ---
67
 
68
+ ## 🚫 Out-of-Scope Use / Uygun Olmayan Kullanım
69
 
70
+ - Medical, legal, or high-risk decision-making
71
+ - Misinformation or unethical applications
72
 
73
+ ---
74
 
75
+ ## ⚠️ Bias, Risks and Limitations / Önyargılar, Riskler ve Sınırlamalar
76
 
77
+ Model may still contain biases inherited from the base model. Performance is best within Turkish language and domain-specific contexts (agriculture, finance).
78
 
79
+ ---
80
 
81
+ ## 🧪 Training & Evaluation / Eğitim ve Değerlendirme
82
 
83
+ - **Training Library / Eğitim Kütüphanesi:** [Unsloth](https://github.com/unslothai/unsloth)
84
+ - **Hardware Used / Kullanılan Donanım:** NVIDIA A100 / RTX 3090
85
+ - **Precision:** bf16 (mixed precision)
86
+ - **Dataset:** Özel Türkçe veriseti (tarım & finans odaklı)
87
+ - **Evaluation Tool:** `wandb` (Weights & Biases)
88
 
89
+ ### 📊 Evaluation Results / Değerlendirme Sonuçları
90
 
91
+ | Metric | Value |
92
+ |----------------------|--------|
93
+ | ROUGE-1 | 0.2439 |
94
+ | ROUGE-2 | 0.1303 |
95
+ | ROUGE-L | 0.2147 |
96
+ | BLEU | 0.0406 |
97
+ | METEOR | 0.2262 |
98
+ | BERTScore Precision | 0.5286 |
99
+ | BERTScore Recall | 0.5834 |
100
+ | BERTScore F1 | 0.553 |
101
 
102
+ Tüm metrikler başarıyla hesaplandı ve `wandb` üzerinde kaydedildi.
103
 
104
+ ---
105
 
106
+ ## 💡 Quickstart / Hızlı Başlangıç
107
 
108
+ ```python
109
+ from transformers import AutoModelForCausalLM, AutoTokenizer
110
+ import torch
111
 
112
+ model = AutoModelForCausalLM.from_pretrained("hosmankarabulut/SmolLM2-Ziraat-Turkish-v1", torch_dtype=torch.bfloat16)
113
+ tokenizer = AutoTokenizer.from_pretrained("hosmankarabulut/SmolLM2-Ziraat-Turkish-v1")
114
 
115
+ inputs = tokenizer("Türkiye'de tarım politikaları hakkında ne düşünüyorsun?", return_tensors="pt")
116
+ outputs = model.generate(**inputs, max_new_tokens=100)
117
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))