metadata
license: cc-by-4.0
base_model: hon9kon9ize/bert-large-cantonese
tags:
- generated_from_trainer
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
model-index:
- name: >-
Cantonese Semantic Textual Similarity BERT based on
hon9kon9ize/bert-large-cantonese-sts
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.8195601142712411
- type: spearman_cosine
value: 0.8107244990045813
- type: pearson_manhattan
value: 0.8227349515965701
- type: spearman_manhattan
value: 0.8106624105549446
- type: pearson_euclidean
value: 0.8224444134336916
- type: spearman_euclidean
value: 0.810580167108645
- type: pearson_dot
value: 0.8197330940854836
- type: spearman_dot
value: 0.8107833210821748
bert-large-cantonese-sts
This model is a fine-tuned version of hon9kon9ize/bert-large-cantonese on the hon9kon9ize/yue-sts dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 1024
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 10
Training results
Framework versions
- Transformers 4.43.3
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.19.1