SentenceTransformer based on hon9kon9ize/bert-large-cantonese-nli

This is a sentence-transformers model finetuned from hon9kon9ize/bert-large-cantonese-nli on the yue-stsb, stsb and C-MTEB/STSB dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: hon9kon9ize/bert-large-cantonese-nli
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    '一個細路女同一個細路仔喺度睇書。',
    '一個大啲嘅小朋友玩緊公仔,望住窗外。',
    '有個男人彈緊結他。',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric sts-dev sts-test
pearson_cosine 0.7983 0.7638
spearman_cosine 0.7996 0.7605

Training Details

Training Dataset

yue-stsb

  • Dataset: yue-stsb at 40cea5d

  • Size: 5,749 training samples

  • Columns: sentence1, sentence2, and score

  • Approximate statistics based on the first 1000 samples:

    sentence1 sentence2 score
    type string string float
    details
    • min: 7 tokens
    • mean: 12.24 tokens
    • max: 40 tokens
    • min: 7 tokens
    • mean: 12.21 tokens
    • max: 30 tokens
    • min: 0.0
    • mean: 0.45
    • max: 1.0
  • Samples:

    sentence1 sentence2 score
    架飛機正準備起飛。 一架飛機正準備起飛。 1.0
    有個男人吹緊一支好大嘅笛。 有個男人吹緊笛。 0.76
    有個男人喺批薩上面灑碎芝士。 有個男人將磨碎嘅芝士灑落一塊未焗嘅批薩上面。 0.76
  • Loss: CosineSimilarityLoss with these parameters:

    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    
  • Size: 16,729 training samples

  • Columns: sentence1, sentence2, and score

  • Approximate statistics based on the first 1000 samples:

    sentence1 sentence2 score
    type string string float
    details
    • min: 5 tokens
    • mean: 20.29 tokens
    • max: 74 tokens
    • min: 6 tokens
    • mean: 20.36 tokens
    • max: 76 tokens
    • min: 0.0
    • mean: 0.52
    • max: 1.0
  • Samples:

    sentence1 sentence2 score
    奧巴馬登記咗參加奧巴馬醫保。 美國人爭住喺限期前登記參加奧巴馬醫保計劃, 0.24
    Search ends for missing asylum-seekers Search narrowed for missing man 0.28
    檢察官喺五月突然轉軚,要求公開驗屍報告,因為有利於辯方嘅康納·彼得森驗屍報告部分內容已經洩露畀媒體。 佢哋要求公開驗屍報告,因為彼得森腹中胎兒嘅驗屍報告中,對辯方有利嘅部分已經洩露俾傳媒。 0.8
  • Loss: CosineSimilarityLoss with these parameters:

    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 4,458 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 8 tokens
    • mean: 19.76 tokens
    • max: 53 tokens
    • min: 7 tokens
    • mean: 19.65 tokens
    • max: 53 tokens
    • min: 0.0
    • mean: 0.42
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    有個戴住安全帽嘅男人喺度跳舞。 有個戴住安全帽嘅男人喺度跳舞。 1.0
    一個細路仔騎緊馬。 個細路仔騎緊匹馬。 0.95
    有個男人餵老鼠畀條蛇食。 個男人餵咗隻老鼠畀條蛇食。 1.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • num_train_epochs: 4
  • warmup_ratio: 0.1
  • bf16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss sts-dev_spearman_cosine sts-test_spearman_cosine
0.7634 100 0.0549 0.0403 0.7895 -
1.5267 200 0.027 0.0368 0.7941 -
2.2901 300 0.0187 0.0349 0.7968 -
3.0534 400 0.0119 0.0354 0.8004 -
3.8168 500 0.0076 0.0359 0.7996 -
4.0 524 - - - 0.7605

Framework Versions

  • Python: 3.11.2
  • Sentence Transformers: 3.3.1
  • Transformers: 4.46.1
  • PyTorch: 2.4.0+cu121
  • Accelerate: 1.0.1
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
73
Safetensors
Model size
326M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for hon9kon9ize/bert-large-cantonese-sts

Finetuned
(1)
this model
Finetunes
1 model

Datasets used to train hon9kon9ize/bert-large-cantonese-sts

Space using hon9kon9ize/bert-large-cantonese-sts 1

Evaluation results