|
--- |
|
base_model: boun-tabi-LMG/TURNA |
|
language: |
|
- tr |
|
license: other |
|
model_creator: boun-tabi-LMG |
|
model_name: TURNA |
|
model_type: t5 |
|
prompt_template: '[S2S]prompt<EOS>' |
|
quantized_by: Furkan Erdi |
|
tags: |
|
- GGUF |
|
- Transformers |
|
- TURNA |
|
- t5 |
|
library_name: transformers |
|
architecture: t5 |
|
inference: false |
|
--- |
|
|
|
# TURNA - GGUF |
|
- Model creator: [boun-tabi-LMG](https://huggingface.co/boun-tabi-LMG) |
|
- Original model: [TURNA](https://huggingface.co/boun-tabi-LMG/TURNA) |
|
|
|
<!-- description start --> |
|
## Description |
|
|
|
This repo contains GGUF format model files for [boun-tabi-LMG's TURNA](https://huggingface.co/boun-tabi-LMG/TURNA). |
|
|
|
<!-- description end --> |
|
<!-- README_GGUF.md-about-gguf start --> |
|
### About GGUF |
|
|
|
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. |
|
|
|
Here is an incomplete list of clients and libraries that are known to support GGUF: |
|
|
|
* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. |
|
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. |
|
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. |
|
* [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. |
|
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. |
|
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. |
|
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. |
|
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. |
|
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. |
|
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. |
|
|
|
<!-- README_GGUF.md-about-gguf end --> |
|
|
|
<!-- prompt-template start --> |
|
## Prompt template |
|
|
|
``` |
|
[S2S]prompt<EOS> |
|
``` |
|
|
|
<!-- prompt-template end --> |
|
|
|
|
|
<!-- compatibility_gguf start --> |
|
## Compatibility |
|
|
|
These quantised GGUFv2 files are compatible with candle from huggingface. |
|
|
|
Those models are quantized by candle, cargo using Rust and Python. |
|
|
|
<!-- compatibility_gguf end --> |
|
|
|
<!-- README_GGUF.md-provided-files start --> |
|
## Provided files |
|
|
|
| Name | Bit | Quant Method | Size | Use case | |
|
| ---- | ---- | ---- | ---- | ---- | |
|
| [TURNA_Q2K.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_Q2K.gguf) | 2 | Q2K | 0.36 GB | Smallest size, lowest precision | |
|
| [TURNA_Q3K.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_Q3K.gguf) | 3 | Q3K | 0.48 GB | Very low precision | |
|
| [TURNA_Q4_0.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_Q4_0.gguf) | 4 | Q4_0 | 0.63 GB | Low precision, level 0 | |
|
| [TURNA_Q4_1.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_Q4_1.gguf) | 4 | Q4_1 | 0.70 GB | Slightly better than Q4_0 | |
|
| [TURNA_Q4K.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_Q4K.gguf) | 4 | Q4K | 0.63 GB | Kernel optimized, low precision | |
|
| [TURNA_Q5_0.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_Q5_0.gguf) | 5 | Q5_0 | 0.77 GB | Moderate precision, level 0 | |
|
| [TURNA_Q5_1.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_Q5_1.gguf) | 5 | Q5_1 | 0.84 GB | Better than Q5_0 | |
|
| [TURNA_Q5K.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_Q5K.gguf) | 5 | Q5K | 0.77 GB | Kernel optimized, moderate precision | |
|
| [TURNA_Q6K.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_Q6K.gguf) | 6 | Q6K | 0.91 GB | Higher precision than Q5K | |
|
| [TURNA_Q8_0.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_Q8_0.gguf) | 8 | Q8_0 | 1.21 GB | High precision, level 0 | |
|
| [TURNA_Q8_1.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_Q8_1.gguf) | 8 | Q8_1 | 1.29 GB | Better than Q8_0 | |
|
| [TURNA_Q8K.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_Q8K.gguf) | 8 | Q8K | 1.30 GB | Kernel optimized, highest precision among quantized | |
|
| [TURNA_F16.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_F16.gguf) | 16 | F16 | 2.28 GB | High precision, smaller size | |
|
| [TURNA_F32.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_F32.gguf) | 32 | F32 | 4.57 GB | Highest precision, largest size | |
|
|
|
<!-- README_GGUF.md-provided-files end --> |
|
|
|
# License |
|
|
|
The model is shared with the public to be used solely for non-commercial academic research purposes. |
|
|
|
<!-- README_GGUF.md-how-to-download start --> |
|
|
|
## How to download GGUF files |
|
|
|
**Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. |
|
|
|
The following clients/libraries will automatically download models for you, providing a list of available models to choose from: |
|
|
|
### On the command line, including multiple files at once |
|
|
|
I recommend using the `huggingface-hub` Python library: |
|
|
|
```shell |
|
pip3 install huggingface-hub |
|
``` |
|
|
|
Then you can download any individual model file to the current directory, at high speed, with a command like this: |
|
|
|
```shell |
|
huggingface-cli download helizac/TURNA_GGUF TURNA_Q4_K.gguf --local-dir . --local-dir-use-symlinks False |
|
``` |
|
|
|
<details> |
|
<summary>More advanced huggingface-cli download usage (click to read)</summary> |
|
|
|
You can also download multiple files at once with a pattern: |
|
|
|
```shell |
|
huggingface-cli download helizac/TURNA_GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' |
|
``` |
|
|
|
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). |
|
|
|
</details> |
|
|
|
<!-- README_GGUF.md-how-to-download end --> |
|
|
|
<!-- README_GGUF.md-how-to-run start --> |
|
|
|
|
|
# Example `colab` usage |
|
|
|
```shell |
|
%%shell |
|
# Update and install dependencies |
|
apt update && apt install -y curl build-essential |
|
pip install huggingface_hub |
|
|
|
# Install Rust using rustup |
|
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y |
|
|
|
# Add Rust to the PATH |
|
source $HOME/.cargo/env |
|
|
|
# Cloning Candle from Huggingface |
|
git clone https://github.com/huggingface/candle.git |
|
|
|
# Use read CLI or a CLI that has read permissions |
|
huggingface-cli login |
|
``` |
|
|
|
```shell |
|
%cd candle |
|
``` |
|
|
|
```python |
|
def run_turna_gguf(prompt="Bir varmış bir yokmuş, ", temperature=1, quantization_method="Q8_1", config_file="config.json", model_id = "helizac/TURNA_GGUF"): |
|
os.system(f'cargo run --example quantized-t5 --release -- --model-id "{model_id}" --prompt "[S2S]{prompt}<EOS>" --temperature {temperature} --weight-file "TURNA_{quantization_method}.gguf" --config-file "{config_file}"') |
|
``` |
|
|
|
```python |
|
run_turna_gguf("Bir varmış bir yokmuş") # test |
|
``` |
|
|
|
Sure, here's an explanation for the function `run_turna_gguf`: |
|
|
|
### Function Explanation: `run_turna_gguf` |
|
|
|
```python |
|
def run_turna_gguf(prompt="Bir varmış bir yokmuş, ", temperature=1, quantization_method="Q8_1", config_file="config.json", model_id = "helizac/TURNA_GGUF"): |
|
os.system(f'cargo run --example quantized-t5 --release -- --model-id "{model_id}" --prompt "[S2S]{prompt}<EOS>" --temperature {temperature} --weight-file "TURNA_{quantization_method}.gguf" --config-file "{config_file}"') |
|
``` |
|
|
|
#### Parameters: |
|
- **prompt** (`str`, default: "Bir varmış bir yokmuş, "): |
|
- The initial text provided as input to the model. |
|
- **temperature** (`float`, default: 1): |
|
- Controls the randomness of the output. Higher values make the output more random, while lower values make it more deterministic. |
|
- **quantization_method** (`str`, default: "Q8_1"): |
|
- Specifies the quantization method to use. This selects the corresponding `.gguf` weight file. |
|
- **config_file** (`str`, default: "config.json"): |
|
- The path to the configuration file containing model-specific settings. |
|
- **model_id** (`str`, default: "helizac/TURNA_GGUF"): |
|
- The identifier for the model in the Hugging Face repository. |
|
|
|
## Thanks, and how to contribute |
|
|
|
Thanks to the [boun-tabi-LMG](https://github.com/boun-tabi-LMG) team! |
|
|
|
<!-- footer end --> |
|
|
|
# GGUF model card: |
|
|
|
``` |
|
{Furkan Erdi} |
|
``` |
|
|
|
<!-- original-model-card start --> |
|
# Original model card: BOUN TABI Language Modeling Group's TURNA |
|
|
|
TURNA 🦩 |
|
|
|
``` |
|
@misc{uludoğan2024turna, |
|
title={TURNA: A Turkish Encoder-Decoder Language Model for Enhanced Understanding and Generation}, |
|
author={Gökçe Uludoğan and Zeynep Yirmibeşoğlu Balal and Furkan Akkurt and Melikşah Türker and Onur Güngör and Susan Üsküdarlı}, |
|
year={2024}, |
|
eprint={2401.14373}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |