File size: 9,536 Bytes
1552625 c9e8f14 1552625 da70942 7847407 63abce8 1fd3684 1552625 0e9b1d0 1552625 c9e8f14 1552625 c8d4d76 e5b04d5 1552625 a5f5563 f9c0c71 0e9b1d0 1552625 da70942 1552625 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
---
base_model: boun-tabi-LMG/TURNA
language:
- tr
license: other
model_creator: boun-tabi-LMG
model_name: TURNA
model_type: t5
prompt_template: '[S2S]prompt<EOS>'
quantized_by: Furkan Erdi
tags:
- GGUF
- Transformers
- TURNA
- t5
library_name: transformers
architecture: t5
inference: false
---
# TURNA - GGUF
- Model creator: [boun-tabi-LMG](https://huggingface.co/boun-tabi-LMG)
- Original model: [TURNA](https://huggingface.co/boun-tabi-LMG/TURNA)
<!-- description start -->
## Description
This repo contains GGUF format model files for [boun-tabi-LMG's TURNA](https://huggingface.co/boun-tabi-LMG/TURNA).
<!-- description end -->
<!-- README_GGUF.md-about-gguf start -->
### About GGUF
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
Here is an incomplete list of clients and libraries that are known to support GGUF:
* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
<!-- README_GGUF.md-about-gguf end -->
<!-- prompt-template start -->
## Prompt template
```
[S2S]prompt<EOS>
```
<!-- prompt-template end -->
<!-- compatibility_gguf start -->
## Compatibility
These quantised GGUFv2 files are compatible with candle from huggingface.
Those models are quantized by candle, cargo using Rust and Python.
<!-- compatibility_gguf end -->
<!-- README_GGUF.md-provided-files start -->
## Provided files
| Name | Bit | Quant Method | Size | Use case |
| ---- | ---- | ---- | ---- | ---- |
| [TURNA_Q2K.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_Q2K.gguf) | 2 | Q2K | 0.36 GB | Smallest size, lowest precision |
| [TURNA_Q3K.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_Q3K.gguf) | 3 | Q3K | 0.48 GB | Very low precision |
| [TURNA_Q4_0.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_Q4_0.gguf) | 4 | Q4_0 | 0.63 GB | Low precision, level 0 |
| [TURNA_Q4_1.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_Q4_1.gguf) | 4 | Q4_1 | 0.70 GB | Slightly better than Q4_0 |
| [TURNA_Q4K.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_Q4K.gguf) | 4 | Q4K | 0.63 GB | Kernel optimized, low precision |
| [TURNA_Q5_0.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_Q5_0.gguf) | 5 | Q5_0 | 0.77 GB | Moderate precision, level 0 |
| [TURNA_Q5_1.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_Q5_1.gguf) | 5 | Q5_1 | 0.84 GB | Better than Q5_0 |
| [TURNA_Q5K.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_Q5K.gguf) | 5 | Q5K | 0.77 GB | Kernel optimized, moderate precision |
| [TURNA_Q6K.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_Q6K.gguf) | 6 | Q6K | 0.91 GB | Higher precision than Q5K |
| [TURNA_Q8_0.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_Q8_0.gguf) | 8 | Q8_0 | 1.21 GB | High precision, level 0 |
| [TURNA_Q8_1.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_Q8_1.gguf) | 8 | Q8_1 | 1.29 GB | Better than Q8_0 |
| [TURNA_Q8K.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_Q8K.gguf) | 8 | Q8K | 1.30 GB | Kernel optimized, highest precision among quantized |
| [TURNA_F16.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_F16.gguf) | 16 | F16 | 2.28 GB | High precision, smaller size |
| [TURNA_F32.gguf](https://huggingface.co/helizac/TURNA_GGUF/blob/main/TURNA_F32.gguf) | 32 | F32 | 4.57 GB | Highest precision, largest size |
<!-- README_GGUF.md-provided-files end -->
# License
The model is shared with the public to be used solely for non-commercial academic research purposes.
<!-- README_GGUF.md-how-to-download start -->
## How to download GGUF files
**Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
### On the command line, including multiple files at once
I recommend using the `huggingface-hub` Python library:
```shell
pip3 install huggingface-hub
```
Then you can download any individual model file to the current directory, at high speed, with a command like this:
```shell
huggingface-cli download helizac/TURNA_GGUF TURNA_Q4_K.gguf --local-dir . --local-dir-use-symlinks False
```
<details>
<summary>More advanced huggingface-cli download usage (click to read)</summary>
You can also download multiple files at once with a pattern:
```shell
huggingface-cli download helizac/TURNA_GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
</details>
<!-- README_GGUF.md-how-to-download end -->
<!-- README_GGUF.md-how-to-run start -->
# Example `colab` usage
```shell
%%shell
# Update and install dependencies
apt update && apt install -y curl build-essential
pip install huggingface_hub
# Install Rust using rustup
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
# Add Rust to the PATH
source $HOME/.cargo/env
# Cloning Candle from Huggingface
git clone https://github.com/huggingface/candle.git
# Use read CLI or a CLI that has read permissions
huggingface-cli login
```
```shell
%cd candle
```
```python
def run_turna_gguf(prompt="Bir varmış bir yokmuş, ", temperature=1, quantization_method="Q8_1", config_file="config.json", model_id = "helizac/TURNA_GGUF"):
os.system(f'cargo run --example quantized-t5 --release -- --model-id "{model_id}" --prompt "[S2S]{prompt}<EOS>" --temperature {temperature} --weight-file "TURNA_{quantization_method}.gguf" --config-file "{config_file}"')
```
```python
run_turna_gguf("Bir varmış bir yokmuş") # test
```
Sure, here's an explanation for the function `run_turna_gguf`:
### Function Explanation: `run_turna_gguf`
```python
def run_turna_gguf(prompt="Bir varmış bir yokmuş, ", temperature=1, quantization_method="Q8_1", config_file="config.json", model_id = "helizac/TURNA_GGUF"):
os.system(f'cargo run --example quantized-t5 --release -- --model-id "{model_id}" --prompt "[S2S]{prompt}<EOS>" --temperature {temperature} --weight-file "TURNA_{quantization_method}.gguf" --config-file "{config_file}"')
```
#### Parameters:
- **prompt** (`str`, default: "Bir varmış bir yokmuş, "):
- The initial text provided as input to the model.
- **temperature** (`float`, default: 1):
- Controls the randomness of the output. Higher values make the output more random, while lower values make it more deterministic.
- **quantization_method** (`str`, default: "Q8_1"):
- Specifies the quantization method to use. This selects the corresponding `.gguf` weight file.
- **config_file** (`str`, default: "config.json"):
- The path to the configuration file containing model-specific settings.
- **model_id** (`str`, default: "helizac/TURNA_GGUF"):
- The identifier for the model in the Hugging Face repository.
## Thanks, and how to contribute
Thanks to the [boun-tabi-LMG](https://github.com/boun-tabi-LMG) team!
<!-- footer end -->
# GGUF model card:
```
{Furkan Erdi}
```
<!-- original-model-card start -->
# Original model card: BOUN TABI Language Modeling Group's TURNA
TURNA 🦩
```
@misc{uludoğan2024turna,
title={TURNA: A Turkish Encoder-Decoder Language Model for Enhanced Understanding and Generation},
author={Gökçe Uludoğan and Zeynep Yirmibeşoğlu Balal and Furkan Akkurt and Melikşah Türker and Onur Güngör and Susan Üsküdarlı},
year={2024},
eprint={2401.14373},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |