|
--- |
|
language: en |
|
datasets: |
|
- aesdd |
|
tags: |
|
- audio |
|
- audio-classification |
|
- speech |
|
license: apache-2.0 |
|
--- |
|
~~~ |
|
# requirement packages |
|
!pip install git+https://github.com/huggingface/datasets.git |
|
!pip install git+https://github.com/huggingface/transformers.git |
|
!pip install torchaudio |
|
!pip install librosa |
|
|
|
~~~ |
|
# prediction |
|
~~~ |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torchaudio |
|
from transformers import AutoConfig, Wav2Vec2FeatureExtractor |
|
import librosa |
|
import IPython.display as ipd |
|
import numpy as np |
|
import pandas as pd |
|
~~~ |
|
~~~ |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model_name_or_path = "harshit345/xlsr-wav2vec-speech-emotion-recognition" |
|
config = AutoConfig.from_pretrained(model_name_or_path) |
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path) |
|
sampling_rate = feature_extractor.sampling_rate |
|
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device) |
|
~~~ |
|
~~~ |
|
def speech_file_to_array_fn(path, sampling_rate): |
|
speech_array, _sampling_rate = torchaudio.load(path) |
|
resampler = torchaudio.transforms.Resample(_sampling_rate) |
|
speech = resampler(speech_array).squeeze().numpy() |
|
return speech |
|
def predict(path, sampling_rate): |
|
speech = speech_file_to_array_fn(path, sampling_rate) |
|
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True) |
|
inputs = {key: inputs[key].to(device) for key in inputs} |
|
with torch.no_grad(): |
|
logits = model(**inputs).logits |
|
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] |
|
outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)] |
|
return outputs |
|
~~~ |
|
# prediction |
|
~~~ |
|
# path for a sample |
|
path = '/data/jtes_v1.1/wav/f01/ang/f01_ang_01.wav' |
|
data, sampling_rate = librosa.load(path) |
|
outputs = predict(data, sampling_rate) |
|
~~~ |
|
~~~ |
|
[{'Emotion': 'anger', 'Score': '78.3%'}, |
|
{'Emotion': 'disgust', 'Score': '11.7%'}, |
|
{'Emotion': 'fear', 'Score': '5.4%'}, |
|
{'Emotion': 'happiness', 'Score': '4.1%'}, |
|
{'Emotion': 'sadness', 'Score': '0.5%'}] |
|
~~~ |
|
|
|
## Evaluation |
|
The following tables summarize the scores obtained by model overall and per each class. |
|
|
|
|
|
| Emotions | precision | recall | f1-score | accuracy | |
|
|-----------|-----------|--------|----------|----------| |
|
| anger | 0.82 | 1.00 | 0.81 | | |
|
| disgust | 0.85 | 0.96 | 0.85 | | |
|
| fear | 0.78 | 0.88 | 0.80 | | |
|
| happiness | 0.84 | 0.71 | 0.78 | | |
|
| sadness | 0.86 | 1.00 | 0.79 | | |
|
| | | | Overall | 0.806 | |
|
|
|
|
|
## |
|
Colab Notebook |
|
https://colab.research.google.com/drive/1aPPb_ZVS5dlFVZySly8Q80a44La1XjJu?usp=sharing |