# requirement packages
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa

prediction

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
import librosa
import IPython.display as ipd
import numpy as np
import pandas as pd
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name_or_path = "harshit345/xlsr-wav2vec-speech-emotion-recognition"
config = AutoConfig.from_pretrained(model_name_or_path)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
sampling_rate = feature_extractor.sampling_rate
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
def speech_file_to_array_fn(path, sampling_rate):
    speech_array, _sampling_rate = torchaudio.load(path)
    resampler = torchaudio.transforms.Resample(_sampling_rate)
    speech = resampler(speech_array).squeeze().numpy()
    return speech
def predict(path, sampling_rate):
    speech = speech_file_to_array_fn(path, sampling_rate)
    inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
    inputs = {key: inputs[key].to(device) for key in inputs}
    with torch.no_grad():
        logits = model(**inputs).logits
    scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
    outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
    return outputs

prediction

# path for a sample
path = '/data/jtes_v1.1/wav/f01/ang/f01_ang_01.wav'   
outputs = predict(path, sampling_rate)
[{'Emotion': 'anger', 'Score': '78.3%'},
 {'Emotion': 'disgust', 'Score': '11.7%'},
 {'Emotion': 'fear', 'Score': '5.4%'},
 {'Emotion': 'happiness', 'Score': '4.1%'},
 {'Emotion': 'sadness', 'Score': '0.5%'}]

Evaluation

The following tables summarize the scores obtained by model overall and per each class.

Emotions precision recall f1-score accuracy
anger 0.82 1.00 0.81
disgust 0.85 0.96 0.85
fear 0.78 0.88 0.80
happiness 0.84 0.71 0.78
sadness 0.86 1.00 0.79
Overall 0.806

Colab Notebook https://colab.research.google.com/drive/1aPPb_ZVS5dlFVZySly8Q80a44La1XjJu?usp=sharing

Downloads last month
738
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using harshit345/xlsr-wav2vec-speech-emotion-recognition 13