metadata
library_name: transformers
language:
- en
license: apache-2.0
base_model: google/bert_uncased_L-4_H-512_A-8
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- spearmanr
model-index:
- name: bert_uncased_L-4_H-512_A-8_stsb
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE STSB
type: glue
args: stsb
metrics:
- name: Spearmanr
type: spearmanr
value: 0.8704339623572931
bert_uncased_L-4_H-512_A-8_stsb
This model is a fine-tuned version of google/bert_uncased_L-4_H-512_A-8 on the GLUE STSB dataset. It achieves the following results on the evaluation set:
- Loss: 0.5646
- Pearson: 0.8739
- Spearmanr: 0.8704
- Combined Score: 0.8721
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score |
---|---|---|---|---|---|---|
2.5878 | 1.0 | 23 | 0.9754 | 0.7823 | 0.7580 | 0.7702 |
0.797 | 2.0 | 46 | 0.7766 | 0.8466 | 0.8482 | 0.8474 |
0.5786 | 3.0 | 69 | 0.6314 | 0.8603 | 0.8587 | 0.8595 |
0.4961 | 4.0 | 92 | 0.6342 | 0.8643 | 0.8637 | 0.8640 |
0.3944 | 5.0 | 115 | 0.6018 | 0.8694 | 0.8683 | 0.8689 |
0.3362 | 6.0 | 138 | 0.6101 | 0.8659 | 0.8657 | 0.8658 |
0.2932 | 7.0 | 161 | 0.6056 | 0.8678 | 0.8666 | 0.8672 |
0.2495 | 8.0 | 184 | 0.6255 | 0.8679 | 0.8672 | 0.8675 |
0.2268 | 9.0 | 207 | 0.5970 | 0.8699 | 0.8685 | 0.8692 |
0.2037 | 10.0 | 230 | 0.6517 | 0.8691 | 0.8672 | 0.8682 |
0.191 | 11.0 | 253 | 0.6017 | 0.8709 | 0.8677 | 0.8693 |
0.1678 | 12.0 | 276 | 0.6097 | 0.8704 | 0.8685 | 0.8695 |
0.1546 | 13.0 | 299 | 0.6052 | 0.8713 | 0.8701 | 0.8707 |
0.1486 | 14.0 | 322 | 0.5914 | 0.8714 | 0.8689 | 0.8701 |
0.1372 | 15.0 | 345 | 0.6175 | 0.8738 | 0.8702 | 0.8720 |
0.131 | 16.0 | 368 | 0.5826 | 0.8727 | 0.8702 | 0.8715 |
0.1216 | 17.0 | 391 | 0.5779 | 0.8717 | 0.8686 | 0.8702 |
0.1145 | 18.0 | 414 | 0.5646 | 0.8739 | 0.8704 | 0.8721 |
0.1158 | 19.0 | 437 | 0.5811 | 0.8738 | 0.8711 | 0.8724 |
0.109 | 20.0 | 460 | 0.5896 | 0.8763 | 0.8720 | 0.8742 |
0.105 | 21.0 | 483 | 0.5863 | 0.8737 | 0.8705 | 0.8721 |
0.0995 | 22.0 | 506 | 0.5758 | 0.8741 | 0.8701 | 0.8721 |
0.0971 | 23.0 | 529 | 0.5781 | 0.8748 | 0.8713 | 0.8731 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3