--- library_name: transformers language: - en license: apache-2.0 base_model: google/bert_uncased_L-4_H-512_A-8 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: bert_uncased_L-4_H-512_A-8_stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.8704339623572931 --- # bert_uncased_L-4_H-512_A-8_stsb This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 0.5646 - Pearson: 0.8739 - Spearmanr: 0.8704 - Combined Score: 0.8721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 2.5878 | 1.0 | 23 | 0.9754 | 0.7823 | 0.7580 | 0.7702 | | 0.797 | 2.0 | 46 | 0.7766 | 0.8466 | 0.8482 | 0.8474 | | 0.5786 | 3.0 | 69 | 0.6314 | 0.8603 | 0.8587 | 0.8595 | | 0.4961 | 4.0 | 92 | 0.6342 | 0.8643 | 0.8637 | 0.8640 | | 0.3944 | 5.0 | 115 | 0.6018 | 0.8694 | 0.8683 | 0.8689 | | 0.3362 | 6.0 | 138 | 0.6101 | 0.8659 | 0.8657 | 0.8658 | | 0.2932 | 7.0 | 161 | 0.6056 | 0.8678 | 0.8666 | 0.8672 | | 0.2495 | 8.0 | 184 | 0.6255 | 0.8679 | 0.8672 | 0.8675 | | 0.2268 | 9.0 | 207 | 0.5970 | 0.8699 | 0.8685 | 0.8692 | | 0.2037 | 10.0 | 230 | 0.6517 | 0.8691 | 0.8672 | 0.8682 | | 0.191 | 11.0 | 253 | 0.6017 | 0.8709 | 0.8677 | 0.8693 | | 0.1678 | 12.0 | 276 | 0.6097 | 0.8704 | 0.8685 | 0.8695 | | 0.1546 | 13.0 | 299 | 0.6052 | 0.8713 | 0.8701 | 0.8707 | | 0.1486 | 14.0 | 322 | 0.5914 | 0.8714 | 0.8689 | 0.8701 | | 0.1372 | 15.0 | 345 | 0.6175 | 0.8738 | 0.8702 | 0.8720 | | 0.131 | 16.0 | 368 | 0.5826 | 0.8727 | 0.8702 | 0.8715 | | 0.1216 | 17.0 | 391 | 0.5779 | 0.8717 | 0.8686 | 0.8702 | | 0.1145 | 18.0 | 414 | 0.5646 | 0.8739 | 0.8704 | 0.8721 | | 0.1158 | 19.0 | 437 | 0.5811 | 0.8738 | 0.8711 | 0.8724 | | 0.109 | 20.0 | 460 | 0.5896 | 0.8763 | 0.8720 | 0.8742 | | 0.105 | 21.0 | 483 | 0.5863 | 0.8737 | 0.8705 | 0.8721 | | 0.0995 | 22.0 | 506 | 0.5758 | 0.8741 | 0.8701 | 0.8721 | | 0.0971 | 23.0 | 529 | 0.5781 | 0.8748 | 0.8713 | 0.8731 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3