|
# AIDO.RNA 1M |
|
|
|
AIDO.RNA 1M is a 1 million parameter RNA foundation model pre-trained on 886 million RNA sequences from the MARS database. |
|
|
|
## How to Use |
|
### Build any downstream models from this backbone |
|
#### Embedding |
|
```python |
|
from genbio_finetune.tasks import Embed |
|
model = Embed.from_config({"model.backbone": "rnafm_1m"}).eval() |
|
collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]}) |
|
embedding = model(collated_batch) |
|
print(embedding.shape) |
|
print(embedding) |
|
``` |
|
#### Sequence Level Classification |
|
```python |
|
import torch |
|
from genbio_finetune.tasks import SequenceClassification |
|
model = SequenceClassification.from_config({"model.backbone": "rnafm_1m", "model.n_classes": 2}).eval() |
|
collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]}) |
|
logits = model(collated_batch) |
|
print(logits) |
|
print(torch.argmax(logits, dim=-1)) |
|
``` |
|
#### Token Level Classification |
|
```python |
|
import torch |
|
from genbio_finetune.tasks import TokenClassification |
|
model = TokenClassification.from_config({"model.backbone": "rnafm_1m", "model.n_classes": 3}).eval() |
|
collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]}) |
|
logits = model(collated_batch) |
|
print(logits) |
|
print(torch.argmax(logits, dim=-1)) |
|
``` |
|
#### Regression |
|
```python |
|
from genbio_finetune.tasks import SequenceRegression |
|
model = SequenceRegression.from_config({"model.backbone": "rnafm_1m"}).eval() |
|
collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]}) |
|
logits = model(collated_batch) |
|
print(logits) |
|
``` |
|
#### Or use our one-liner CLI to finetune or evaluate any of the above! |
|
``` |
|
gbft fit --model SequenceClassification --model.backbone rnafm_1m --data SequenceClassification --data.path <hf_or_local_path_to_your_dataset> |
|
gbft test --model SequenceClassification --model.backbone rnafm_1m --data SequenceClassification --data.path <hf_or_local_path_to_your_dataset> |
|
``` |
|
For more information, visit: [Model Generator](https://github.com/genbio-ai/modelgenerator) |