AIDO.RNA-1M-MARS / README.md
DianLiI's picture
Update README.md
1252742 verified
|
raw
history blame
1.93 kB

AIDO.RNA 1M

AIDO.RNA 1M is a 1 million parameter RNA foundation model pre-trained on 886 million RNA sequences from the MARS database.

How to Use

Build any downstream models from this backbone

Embedding

from genbio_finetune.tasks import Embed
model = Embed.from_config({"model.backbone": "rnafm_1m"}).eval()
collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]})
embedding = model(collated_batch)
print(embedding.shape)
print(embedding)

Sequence Level Classification

import torch
from genbio_finetune.tasks import SequenceClassification
model = SequenceClassification.from_config({"model.backbone": "rnafm_1m", "model.n_classes": 2}).eval()
collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]})
logits = model(collated_batch)
print(logits)
print(torch.argmax(logits, dim=-1))

Token Level Classification

import torch
from genbio_finetune.tasks import TokenClassification
model = TokenClassification.from_config({"model.backbone": "rnafm_1m", "model.n_classes": 3}).eval()
collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]})
logits = model(collated_batch)
print(logits)
print(torch.argmax(logits, dim=-1))

Regression

from genbio_finetune.tasks import SequenceRegression
model = SequenceRegression.from_config({"model.backbone": "rnafm_1m"}).eval()
collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]})
logits = model(collated_batch)
print(logits)

Or use our one-liner CLI to finetune or evaluate any of the above!

gbft fit --model SequenceClassification --model.backbone rnafm_1m --data SequenceClassification --data.path <hf_or_local_path_to_your_dataset>
gbft test --model SequenceClassification --model.backbone rnafm_1m --data SequenceClassification --data.path <hf_or_local_path_to_your_dataset>

For more information, visit: Model Generator