|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch
|
|
from kernels import get_kernel
|
|
|
|
|
|
batch_invariant_kernel = get_kernel("gagan3012/batch_invariant_kernel")
|
|
|
|
|
|
device = "cuda"
|
|
torch.manual_seed(42)
|
|
torch.cuda.manual_seed(42)
|
|
|
|
print("🚀 Testing batch_invariant_kernel from Hugging Face Hub")
|
|
print(f"✅ CUDA is available. Using device: {torch.cuda.get_device_name()}")
|
|
|
|
|
|
print("\n" + "=" * 60)
|
|
print("🧪 Test 1: Persistent Matrix Multiplication")
|
|
print("=" * 60)
|
|
|
|
|
|
M, K, N = 512, 256, 1024
|
|
a = torch.randn(M, K, device=device, dtype=torch.float32)
|
|
b = torch.randn(K, N, device=device, dtype=torch.float32)
|
|
bias = torch.randn(N, device=device, dtype=torch.float32)
|
|
|
|
print(f"Matrix A shape: {a.shape}")
|
|
print(f"Matrix B shape: {b.shape}")
|
|
print(f"Bias shape: {bias.shape}")
|
|
|
|
|
|
start_event = torch.cuda.Event(enable_timing=True)
|
|
end_event = torch.cuda.Event(enable_timing=True)
|
|
|
|
start_event.record()
|
|
output_no_bias = batch_invariant_kernel.matmul_persistent(a, b)
|
|
end_event.record()
|
|
torch.cuda.synchronize()
|
|
time_no_bias = start_event.elapsed_time(end_event)
|
|
|
|
print(f"\nMatrix multiplication (no bias) completed!")
|
|
print(f"Output shape: {output_no_bias.shape}")
|
|
print(f"Execution time: {time_no_bias:.3f} ms")
|
|
|
|
|
|
start_event.record()
|
|
output_with_bias = batch_invariant_kernel.matmul_persistent(a, b, bias)
|
|
end_event.record()
|
|
torch.cuda.synchronize()
|
|
time_with_bias = start_event.elapsed_time(end_event)
|
|
|
|
print(f"\nMatrix multiplication (with bias) completed!")
|
|
print(f"Output shape: {output_with_bias.shape}")
|
|
print(f"Execution time: {time_with_bias:.3f} ms")
|
|
|
|
|
|
expected_no_bias = torch.mm(a, b)
|
|
expected_with_bias = torch.mm(a, b) + bias
|
|
|
|
max_diff_no_bias = torch.max(torch.abs(output_no_bias - expected_no_bias)).item()
|
|
max_diff_with_bias = torch.max(torch.abs(output_with_bias - expected_with_bias)).item()
|
|
|
|
print(f"Max difference (no bias): {max_diff_no_bias:.6f}")
|
|
print(f"Max difference (with bias): {max_diff_with_bias:.6f}")
|
|
|
|
|
|
print("\n" + "=" * 60)
|
|
print("🧪 Test 2: Log Softmax")
|
|
print("=" * 60)
|
|
|
|
|
|
batch_size = 4
|
|
seq_len = 512
|
|
vocab_size = 32000
|
|
|
|
logits = torch.randn(
|
|
batch_size, seq_len, vocab_size, device=device, dtype=torch.float32
|
|
)
|
|
print(f"Input logits shape: {logits.shape}")
|
|
|
|
|
|
start_event.record()
|
|
log_probs = batch_invariant_kernel.log_softmax(logits, dim=-1)
|
|
end_event.record()
|
|
torch.cuda.synchronize()
|
|
time_log_softmax = start_event.elapsed_time(end_event)
|
|
|
|
print(f"\nLog softmax completed!")
|
|
print(f"Output shape: {log_probs.shape}")
|
|
print(f"Execution time: {time_log_softmax:.3f} ms")
|
|
|
|
|
|
expected_log_probs = torch.log_softmax(logits, dim=-1)
|
|
max_diff_log_softmax = torch.max(torch.abs(log_probs - expected_log_probs)).item()
|
|
print(f"Max difference vs PyTorch: {max_diff_log_softmax:.6f}")
|
|
|
|
|
|
print("\n" + "=" * 60)
|
|
print("🧪 Test 3: Mean Dimension Reduction")
|
|
print("=" * 60)
|
|
|
|
|
|
batch_size = 8
|
|
seq_len = 256
|
|
hidden_size = 768
|
|
|
|
hidden_states = torch.randn(
|
|
batch_size, seq_len, hidden_size, device=device, dtype=torch.float32
|
|
)
|
|
print(f"Input hidden states shape: {hidden_states.shape}")
|
|
|
|
|
|
for dim in [0, 1, 2]:
|
|
start_event.record()
|
|
mean_output = batch_invariant_kernel.mean_dim(hidden_states, dim=dim, keepdim=False)
|
|
end_event.record()
|
|
torch.cuda.synchronize()
|
|
time_mean = start_event.elapsed_time(end_event)
|
|
|
|
expected_mean = torch.mean(hidden_states, dim=dim, keepdim=False)
|
|
max_diff_mean = torch.max(torch.abs(mean_output - expected_mean)).item()
|
|
|
|
print(f"\nMean reduction along dim {dim}:")
|
|
print(f" Output shape: {mean_output.shape}")
|
|
print(f" Execution time: {time_mean:.3f} ms")
|
|
print(f" Max difference vs PyTorch: {max_diff_mean:.6f}")
|
|
|
|
|
|
print("\n" + "=" * 60)
|
|
print("🧪 Test 4: End-to-End Attention-like Computation")
|
|
print("=" * 60)
|
|
|
|
|
|
batch_size = 4
|
|
seq_len = 128
|
|
hidden_size = 512
|
|
num_heads = 8
|
|
head_dim = hidden_size // num_heads
|
|
|
|
|
|
x = torch.randn(batch_size, seq_len, hidden_size, device=device, dtype=torch.float32)
|
|
|
|
|
|
w_q = torch.randn(hidden_size, hidden_size, device=device, dtype=torch.float32)
|
|
w_k = torch.randn(hidden_size, hidden_size, device=device, dtype=torch.float32)
|
|
w_v = torch.randn(hidden_size, hidden_size, device=device, dtype=torch.float32)
|
|
w_o = torch.randn(hidden_size, hidden_size, device=device, dtype=torch.float32)
|
|
|
|
print(f"Input shape: {x.shape}")
|
|
print("Computing Q, K, V projections using batch_invariant matmul...")
|
|
|
|
|
|
x_flat = x.view(-1, hidden_size)
|
|
|
|
start_event.record()
|
|
|
|
|
|
q_flat = batch_invariant_kernel.matmul_persistent(x_flat, w_q)
|
|
k_flat = batch_invariant_kernel.matmul_persistent(x_flat, w_k)
|
|
v_flat = batch_invariant_kernel.matmul_persistent(x_flat, w_v)
|
|
|
|
|
|
q = q_flat.view(batch_size, seq_len, num_heads, head_dim).transpose(1, 2)
|
|
k = k_flat.view(batch_size, seq_len, num_heads, head_dim).transpose(1, 2)
|
|
v = v_flat.view(batch_size, seq_len, num_heads, head_dim).transpose(1, 2)
|
|
|
|
|
|
scores = torch.matmul(q, k.transpose(-2, -1)) / (head_dim**0.5)
|
|
|
|
|
|
log_attn_weights = batch_invariant_kernel.log_softmax(scores, dim=-1)
|
|
attn_weights = torch.exp(log_attn_weights)
|
|
|
|
|
|
attn_output = torch.matmul(attn_weights, v)
|
|
|
|
|
|
attn_output = (
|
|
attn_output.transpose(1, 2).contiguous().view(batch_size * seq_len, hidden_size)
|
|
)
|
|
final_output = batch_invariant_kernel.matmul_persistent(attn_output, w_o)
|
|
final_output = final_output.view(batch_size, seq_len, hidden_size)
|
|
|
|
end_event.record()
|
|
torch.cuda.synchronize()
|
|
total_time = start_event.elapsed_time(end_event)
|
|
|
|
print(f"\nEnd-to-end attention computation completed!")
|
|
print(f"Final output shape: {final_output.shape}")
|
|
print(f"Total execution time: {total_time:.3f} ms")
|
|
print(
|
|
f"Output tensor stats - Mean: {final_output.mean().item():.4f}, Std: {final_output.std().item():.4f}"
|
|
)
|
|
|
|
|