# /// script # requires-python = ">=3.10" # dependencies = [ # "torch", # "numpy", # "kernels", # ] # /// import torch from kernels import get_kernel # Load batch_invariant_kernel via kernels library batch_invariant_kernel = get_kernel("gagan3012/batch_invariant_kernel") # Set device and seed for reproducibility device = "cuda" torch.manual_seed(42) torch.cuda.manual_seed(42) print("🚀 Testing batch_invariant_kernel from Hugging Face Hub") print(f"✅ CUDA is available. Using device: {torch.cuda.get_device_name()}") # Test 1: Matrix Multiplication print("\n" + "=" * 60) print("🧪 Test 1: Persistent Matrix Multiplication") print("=" * 60) # Parameters for matrix multiplication M, K, N = 512, 256, 1024 a = torch.randn(M, K, device=device, dtype=torch.float32) b = torch.randn(K, N, device=device, dtype=torch.float32) bias = torch.randn(N, device=device, dtype=torch.float32) print(f"Matrix A shape: {a.shape}") print(f"Matrix B shape: {b.shape}") print(f"Bias shape: {bias.shape}") # Run matrix multiplication without bias start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) start_event.record() output_no_bias = batch_invariant_kernel.matmul_persistent(a, b) end_event.record() torch.cuda.synchronize() time_no_bias = start_event.elapsed_time(end_event) print(f"\nMatrix multiplication (no bias) completed!") print(f"Output shape: {output_no_bias.shape}") print(f"Execution time: {time_no_bias:.3f} ms") # Run matrix multiplication with bias start_event.record() output_with_bias = batch_invariant_kernel.matmul_persistent(a, b, bias) end_event.record() torch.cuda.synchronize() time_with_bias = start_event.elapsed_time(end_event) print(f"\nMatrix multiplication (with bias) completed!") print(f"Output shape: {output_with_bias.shape}") print(f"Execution time: {time_with_bias:.3f} ms") # Verify correctness expected_no_bias = torch.mm(a, b) expected_with_bias = torch.mm(a, b) + bias max_diff_no_bias = torch.max(torch.abs(output_no_bias - expected_no_bias)).item() max_diff_with_bias = torch.max(torch.abs(output_with_bias - expected_with_bias)).item() print(f"Max difference (no bias): {max_diff_no_bias:.6f}") print(f"Max difference (with bias): {max_diff_with_bias:.6f}") # Test 2: Log Softmax print("\n" + "=" * 60) print("🧪 Test 2: Log Softmax") print("=" * 60) # Parameters for log softmax (typical attention dimensions) batch_size = 4 seq_len = 512 vocab_size = 32000 logits = torch.randn( batch_size, seq_len, vocab_size, device=device, dtype=torch.float32 ) print(f"Input logits shape: {logits.shape}") # Run log softmax start_event.record() log_probs = batch_invariant_kernel.log_softmax(logits, dim=-1) end_event.record() torch.cuda.synchronize() time_log_softmax = start_event.elapsed_time(end_event) print(f"\nLog softmax completed!") print(f"Output shape: {log_probs.shape}") print(f"Execution time: {time_log_softmax:.3f} ms") # Verify correctness expected_log_probs = torch.log_softmax(logits, dim=-1) max_diff_log_softmax = torch.max(torch.abs(log_probs - expected_log_probs)).item() print(f"Max difference vs PyTorch: {max_diff_log_softmax:.6f}") # Test 3: Mean Reduction print("\n" + "=" * 60) print("🧪 Test 3: Mean Dimension Reduction") print("=" * 60) # Parameters for mean reduction (typical layer norm dimensions) batch_size = 8 seq_len = 256 hidden_size = 768 hidden_states = torch.randn( batch_size, seq_len, hidden_size, device=device, dtype=torch.float32 ) print(f"Input hidden states shape: {hidden_states.shape}") # Test reduction along different dimensions for dim in [0, 1, 2]: start_event.record() mean_output = batch_invariant_kernel.mean_dim(hidden_states, dim=dim, keepdim=False) end_event.record() torch.cuda.synchronize() time_mean = start_event.elapsed_time(end_event) expected_mean = torch.mean(hidden_states, dim=dim, keepdim=False) max_diff_mean = torch.max(torch.abs(mean_output - expected_mean)).item() print(f"\nMean reduction along dim {dim}:") print(f" Output shape: {mean_output.shape}") print(f" Execution time: {time_mean:.3f} ms") print(f" Max difference vs PyTorch: {max_diff_mean:.6f}") # Test 4: End-to-End Attention-like Computation print("\n" + "=" * 60) print("🧪 Test 4: End-to-End Attention-like Computation") print("=" * 60) # Simulate a simple attention computation using our kernels batch_size = 4 seq_len = 128 hidden_size = 512 num_heads = 8 head_dim = hidden_size // num_heads # Input embeddings x = torch.randn(batch_size, seq_len, hidden_size, device=device, dtype=torch.float32) # Weight matrices for Q, K, V projections w_q = torch.randn(hidden_size, hidden_size, device=device, dtype=torch.float32) w_k = torch.randn(hidden_size, hidden_size, device=device, dtype=torch.float32) w_v = torch.randn(hidden_size, hidden_size, device=device, dtype=torch.float32) w_o = torch.randn(hidden_size, hidden_size, device=device, dtype=torch.float32) print(f"Input shape: {x.shape}") print("Computing Q, K, V projections using batch_invariant matmul...") # Reshape for batch matrix multiplication x_flat = x.view(-1, hidden_size) # (batch_size * seq_len, hidden_size) start_event.record() # Compute Q, K, V using our custom matmul q_flat = batch_invariant_kernel.matmul_persistent(x_flat, w_q) k_flat = batch_invariant_kernel.matmul_persistent(x_flat, w_k) v_flat = batch_invariant_kernel.matmul_persistent(x_flat, w_v) # Reshape to multi-head format q = q_flat.view(batch_size, seq_len, num_heads, head_dim).transpose(1, 2) k = k_flat.view(batch_size, seq_len, num_heads, head_dim).transpose(1, 2) v = v_flat.view(batch_size, seq_len, num_heads, head_dim).transpose(1, 2) # Compute attention scores scores = torch.matmul(q, k.transpose(-2, -1)) / (head_dim**0.5) # Apply softmax using our custom log_softmax (convert to softmax) log_attn_weights = batch_invariant_kernel.log_softmax(scores, dim=-1) attn_weights = torch.exp(log_attn_weights) # Apply attention to values attn_output = torch.matmul(attn_weights, v) # Reshape and apply output projection attn_output = ( attn_output.transpose(1, 2).contiguous().view(batch_size * seq_len, hidden_size) ) final_output = batch_invariant_kernel.matmul_persistent(attn_output, w_o) final_output = final_output.view(batch_size, seq_len, hidden_size) end_event.record() torch.cuda.synchronize() total_time = start_event.elapsed_time(end_event) print(f"\nEnd-to-end attention computation completed!") print(f"Final output shape: {final_output.shape}") print(f"Total execution time: {total_time:.3f} ms") print( f"Output tensor stats - Mean: {final_output.mean().item():.4f}, Std: {final_output.std().item():.4f}" )