File size: 6,907 Bytes
a2a20b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "torch",
# "numpy",
# "kernels",
# ]
# ///
import torch
from kernels import get_kernel
# Load batch_invariant_kernel via kernels library
batch_invariant_kernel = get_kernel("gagan3012/batch_invariant_kernel")
# Set device and seed for reproducibility
device = "cuda"
torch.manual_seed(42)
torch.cuda.manual_seed(42)
print("🚀 Testing batch_invariant_kernel from Hugging Face Hub")
print(f"✅ CUDA is available. Using device: {torch.cuda.get_device_name()}")
# Test 1: Matrix Multiplication
print("\n" + "=" * 60)
print("🧪 Test 1: Persistent Matrix Multiplication")
print("=" * 60)
# Parameters for matrix multiplication
M, K, N = 512, 256, 1024
a = torch.randn(M, K, device=device, dtype=torch.float32)
b = torch.randn(K, N, device=device, dtype=torch.float32)
bias = torch.randn(N, device=device, dtype=torch.float32)
print(f"Matrix A shape: {a.shape}")
print(f"Matrix B shape: {b.shape}")
print(f"Bias shape: {bias.shape}")
# Run matrix multiplication without bias
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
output_no_bias = batch_invariant_kernel.matmul_persistent(a, b)
end_event.record()
torch.cuda.synchronize()
time_no_bias = start_event.elapsed_time(end_event)
print(f"\nMatrix multiplication (no bias) completed!")
print(f"Output shape: {output_no_bias.shape}")
print(f"Execution time: {time_no_bias:.3f} ms")
# Run matrix multiplication with bias
start_event.record()
output_with_bias = batch_invariant_kernel.matmul_persistent(a, b, bias)
end_event.record()
torch.cuda.synchronize()
time_with_bias = start_event.elapsed_time(end_event)
print(f"\nMatrix multiplication (with bias) completed!")
print(f"Output shape: {output_with_bias.shape}")
print(f"Execution time: {time_with_bias:.3f} ms")
# Verify correctness
expected_no_bias = torch.mm(a, b)
expected_with_bias = torch.mm(a, b) + bias
max_diff_no_bias = torch.max(torch.abs(output_no_bias - expected_no_bias)).item()
max_diff_with_bias = torch.max(torch.abs(output_with_bias - expected_with_bias)).item()
print(f"Max difference (no bias): {max_diff_no_bias:.6f}")
print(f"Max difference (with bias): {max_diff_with_bias:.6f}")
# Test 2: Log Softmax
print("\n" + "=" * 60)
print("🧪 Test 2: Log Softmax")
print("=" * 60)
# Parameters for log softmax (typical attention dimensions)
batch_size = 4
seq_len = 512
vocab_size = 32000
logits = torch.randn(
batch_size, seq_len, vocab_size, device=device, dtype=torch.float32
)
print(f"Input logits shape: {logits.shape}")
# Run log softmax
start_event.record()
log_probs = batch_invariant_kernel.log_softmax(logits, dim=-1)
end_event.record()
torch.cuda.synchronize()
time_log_softmax = start_event.elapsed_time(end_event)
print(f"\nLog softmax completed!")
print(f"Output shape: {log_probs.shape}")
print(f"Execution time: {time_log_softmax:.3f} ms")
# Verify correctness
expected_log_probs = torch.log_softmax(logits, dim=-1)
max_diff_log_softmax = torch.max(torch.abs(log_probs - expected_log_probs)).item()
print(f"Max difference vs PyTorch: {max_diff_log_softmax:.6f}")
# Test 3: Mean Reduction
print("\n" + "=" * 60)
print("🧪 Test 3: Mean Dimension Reduction")
print("=" * 60)
# Parameters for mean reduction (typical layer norm dimensions)
batch_size = 8
seq_len = 256
hidden_size = 768
hidden_states = torch.randn(
batch_size, seq_len, hidden_size, device=device, dtype=torch.float32
)
print(f"Input hidden states shape: {hidden_states.shape}")
# Test reduction along different dimensions
for dim in [0, 1, 2]:
start_event.record()
mean_output = batch_invariant_kernel.mean_dim(hidden_states, dim=dim, keepdim=False)
end_event.record()
torch.cuda.synchronize()
time_mean = start_event.elapsed_time(end_event)
expected_mean = torch.mean(hidden_states, dim=dim, keepdim=False)
max_diff_mean = torch.max(torch.abs(mean_output - expected_mean)).item()
print(f"\nMean reduction along dim {dim}:")
print(f" Output shape: {mean_output.shape}")
print(f" Execution time: {time_mean:.3f} ms")
print(f" Max difference vs PyTorch: {max_diff_mean:.6f}")
# Test 4: End-to-End Attention-like Computation
print("\n" + "=" * 60)
print("🧪 Test 4: End-to-End Attention-like Computation")
print("=" * 60)
# Simulate a simple attention computation using our kernels
batch_size = 4
seq_len = 128
hidden_size = 512
num_heads = 8
head_dim = hidden_size // num_heads
# Input embeddings
x = torch.randn(batch_size, seq_len, hidden_size, device=device, dtype=torch.float32)
# Weight matrices for Q, K, V projections
w_q = torch.randn(hidden_size, hidden_size, device=device, dtype=torch.float32)
w_k = torch.randn(hidden_size, hidden_size, device=device, dtype=torch.float32)
w_v = torch.randn(hidden_size, hidden_size, device=device, dtype=torch.float32)
w_o = torch.randn(hidden_size, hidden_size, device=device, dtype=torch.float32)
print(f"Input shape: {x.shape}")
print("Computing Q, K, V projections using batch_invariant matmul...")
# Reshape for batch matrix multiplication
x_flat = x.view(-1, hidden_size) # (batch_size * seq_len, hidden_size)
start_event.record()
# Compute Q, K, V using our custom matmul
q_flat = batch_invariant_kernel.matmul_persistent(x_flat, w_q)
k_flat = batch_invariant_kernel.matmul_persistent(x_flat, w_k)
v_flat = batch_invariant_kernel.matmul_persistent(x_flat, w_v)
# Reshape to multi-head format
q = q_flat.view(batch_size, seq_len, num_heads, head_dim).transpose(1, 2)
k = k_flat.view(batch_size, seq_len, num_heads, head_dim).transpose(1, 2)
v = v_flat.view(batch_size, seq_len, num_heads, head_dim).transpose(1, 2)
# Compute attention scores
scores = torch.matmul(q, k.transpose(-2, -1)) / (head_dim**0.5)
# Apply softmax using our custom log_softmax (convert to softmax)
log_attn_weights = batch_invariant_kernel.log_softmax(scores, dim=-1)
attn_weights = torch.exp(log_attn_weights)
# Apply attention to values
attn_output = torch.matmul(attn_weights, v)
# Reshape and apply output projection
attn_output = (
attn_output.transpose(1, 2).contiguous().view(batch_size * seq_len, hidden_size)
)
final_output = batch_invariant_kernel.matmul_persistent(attn_output, w_o)
final_output = final_output.view(batch_size, seq_len, hidden_size)
end_event.record()
torch.cuda.synchronize()
total_time = start_event.elapsed_time(end_event)
print(f"\nEnd-to-end attention computation completed!")
print(f"Final output shape: {final_output.shape}")
print(f"Total execution time: {total_time:.3f} ms")
print(
f"Output tensor stats - Mean: {final_output.mean().item():.4f}, Std: {final_output.std().item():.4f}"
)
|