File size: 6,907 Bytes
a2a20b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# /// script
# requires-python = ">=3.10"
# dependencies = [
#     "torch",
#     "numpy",
#     "kernels",
# ]
# ///

import torch
from kernels import get_kernel

# Load batch_invariant_kernel via kernels library
batch_invariant_kernel = get_kernel("gagan3012/batch_invariant_kernel")

# Set device and seed for reproducibility
device = "cuda"
torch.manual_seed(42)
torch.cuda.manual_seed(42)

print("🚀 Testing batch_invariant_kernel from Hugging Face Hub")
print(f"✅ CUDA is available. Using device: {torch.cuda.get_device_name()}")

# Test 1: Matrix Multiplication
print("\n" + "=" * 60)
print("🧪 Test 1: Persistent Matrix Multiplication")
print("=" * 60)

# Parameters for matrix multiplication
M, K, N = 512, 256, 1024
a = torch.randn(M, K, device=device, dtype=torch.float32)
b = torch.randn(K, N, device=device, dtype=torch.float32)
bias = torch.randn(N, device=device, dtype=torch.float32)

print(f"Matrix A shape: {a.shape}")
print(f"Matrix B shape: {b.shape}")
print(f"Bias shape: {bias.shape}")

# Run matrix multiplication without bias
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)

start_event.record()
output_no_bias = batch_invariant_kernel.matmul_persistent(a, b)
end_event.record()
torch.cuda.synchronize()
time_no_bias = start_event.elapsed_time(end_event)

print(f"\nMatrix multiplication (no bias) completed!")
print(f"Output shape: {output_no_bias.shape}")
print(f"Execution time: {time_no_bias:.3f} ms")

# Run matrix multiplication with bias
start_event.record()
output_with_bias = batch_invariant_kernel.matmul_persistent(a, b, bias)
end_event.record()
torch.cuda.synchronize()
time_with_bias = start_event.elapsed_time(end_event)

print(f"\nMatrix multiplication (with bias) completed!")
print(f"Output shape: {output_with_bias.shape}")
print(f"Execution time: {time_with_bias:.3f} ms")

# Verify correctness
expected_no_bias = torch.mm(a, b)
expected_with_bias = torch.mm(a, b) + bias

max_diff_no_bias = torch.max(torch.abs(output_no_bias - expected_no_bias)).item()
max_diff_with_bias = torch.max(torch.abs(output_with_bias - expected_with_bias)).item()

print(f"Max difference (no bias): {max_diff_no_bias:.6f}")
print(f"Max difference (with bias): {max_diff_with_bias:.6f}")

# Test 2: Log Softmax
print("\n" + "=" * 60)
print("🧪 Test 2: Log Softmax")
print("=" * 60)

# Parameters for log softmax (typical attention dimensions)
batch_size = 4
seq_len = 512
vocab_size = 32000

logits = torch.randn(
    batch_size, seq_len, vocab_size, device=device, dtype=torch.float32
)
print(f"Input logits shape: {logits.shape}")

# Run log softmax
start_event.record()
log_probs = batch_invariant_kernel.log_softmax(logits, dim=-1)
end_event.record()
torch.cuda.synchronize()
time_log_softmax = start_event.elapsed_time(end_event)

print(f"\nLog softmax completed!")
print(f"Output shape: {log_probs.shape}")
print(f"Execution time: {time_log_softmax:.3f} ms")

# Verify correctness
expected_log_probs = torch.log_softmax(logits, dim=-1)
max_diff_log_softmax = torch.max(torch.abs(log_probs - expected_log_probs)).item()
print(f"Max difference vs PyTorch: {max_diff_log_softmax:.6f}")

# Test 3: Mean Reduction
print("\n" + "=" * 60)
print("🧪 Test 3: Mean Dimension Reduction")
print("=" * 60)

# Parameters for mean reduction (typical layer norm dimensions)
batch_size = 8
seq_len = 256
hidden_size = 768

hidden_states = torch.randn(
    batch_size, seq_len, hidden_size, device=device, dtype=torch.float32
)
print(f"Input hidden states shape: {hidden_states.shape}")

# Test reduction along different dimensions
for dim in [0, 1, 2]:
    start_event.record()
    mean_output = batch_invariant_kernel.mean_dim(hidden_states, dim=dim, keepdim=False)
    end_event.record()
    torch.cuda.synchronize()
    time_mean = start_event.elapsed_time(end_event)

    expected_mean = torch.mean(hidden_states, dim=dim, keepdim=False)
    max_diff_mean = torch.max(torch.abs(mean_output - expected_mean)).item()

    print(f"\nMean reduction along dim {dim}:")
    print(f"  Output shape: {mean_output.shape}")
    print(f"  Execution time: {time_mean:.3f} ms")
    print(f"  Max difference vs PyTorch: {max_diff_mean:.6f}")

# Test 4: End-to-End Attention-like Computation
print("\n" + "=" * 60)
print("🧪 Test 4: End-to-End Attention-like Computation")
print("=" * 60)

# Simulate a simple attention computation using our kernels
batch_size = 4
seq_len = 128
hidden_size = 512
num_heads = 8
head_dim = hidden_size // num_heads

# Input embeddings
x = torch.randn(batch_size, seq_len, hidden_size, device=device, dtype=torch.float32)

# Weight matrices for Q, K, V projections
w_q = torch.randn(hidden_size, hidden_size, device=device, dtype=torch.float32)
w_k = torch.randn(hidden_size, hidden_size, device=device, dtype=torch.float32)
w_v = torch.randn(hidden_size, hidden_size, device=device, dtype=torch.float32)
w_o = torch.randn(hidden_size, hidden_size, device=device, dtype=torch.float32)

print(f"Input shape: {x.shape}")
print("Computing Q, K, V projections using batch_invariant matmul...")

# Reshape for batch matrix multiplication
x_flat = x.view(-1, hidden_size)  # (batch_size * seq_len, hidden_size)

start_event.record()

# Compute Q, K, V using our custom matmul
q_flat = batch_invariant_kernel.matmul_persistent(x_flat, w_q)
k_flat = batch_invariant_kernel.matmul_persistent(x_flat, w_k)
v_flat = batch_invariant_kernel.matmul_persistent(x_flat, w_v)

# Reshape to multi-head format
q = q_flat.view(batch_size, seq_len, num_heads, head_dim).transpose(1, 2)
k = k_flat.view(batch_size, seq_len, num_heads, head_dim).transpose(1, 2)
v = v_flat.view(batch_size, seq_len, num_heads, head_dim).transpose(1, 2)

# Compute attention scores
scores = torch.matmul(q, k.transpose(-2, -1)) / (head_dim**0.5)

# Apply softmax using our custom log_softmax (convert to softmax)
log_attn_weights = batch_invariant_kernel.log_softmax(scores, dim=-1)
attn_weights = torch.exp(log_attn_weights)

# Apply attention to values
attn_output = torch.matmul(attn_weights, v)

# Reshape and apply output projection
attn_output = (
    attn_output.transpose(1, 2).contiguous().view(batch_size * seq_len, hidden_size)
)
final_output = batch_invariant_kernel.matmul_persistent(attn_output, w_o)
final_output = final_output.view(batch_size, seq_len, hidden_size)

end_event.record()
torch.cuda.synchronize()
total_time = start_event.elapsed_time(end_event)

print(f"\nEnd-to-end attention computation completed!")
print(f"Final output shape: {final_output.shape}")
print(f"Total execution time: {total_time:.3f} ms")
print(
    f"Output tensor stats - Mean: {final_output.mean().item():.4f}, Std: {final_output.std().item():.4f}"
)