DicFace_model / README.md
NinoNeumann's picture
add model card
20325ff verified
metadata
'[object Object]': null
license: mit

DicFace: Dirichlet-Constrained Variational Codebook Learning for Temporally Coherent Video Face Restoration

Yan Chen1โ€ƒ Hanlin Shang1โ€ƒ Ce Liu1โ€ƒ Yuxuan Chen1โ€ƒ Hui Li1โ€ƒ Weihao Yuan2โ€ƒ
Hao Zhu3โ€ƒ Zilong Dong2โ€ƒ Siyu Zhu1โœ‰๏ธโ€ƒ
1Fudan Universityโ€ƒ 2Alibaba Groupโ€ƒ 3Nanjing Universityโ€ƒ


## ๐Ÿ“ธ Showcase

Blind Face Restoration

Face Inpainting

Face Colorization

๐Ÿ“ฐ News

  • 2025/06/23: Release our pretrained model on huggingface repo.
  • 2025/06/17: Paper submitted on Arixiv. paper
  • 2025/06/16: ๐ŸŽ‰๐ŸŽ‰๐ŸŽ‰ Release inference scripts

๐Ÿ“…๏ธ Roadmap

Status Milestone ETA
โœ… Inference Code release 2025-6-16
โœ… Model Weight release๏ผŒ baidu-link 2025-6-16
โœ… Paper submitted on Arixiv 2025-6-17
๐Ÿš€ Test data release 2025-6-24
๐Ÿš€ Training Code release 2025-6-24

โš™๏ธ Installation

  • System requirement: PyTorch version >=2.4.1, python == 3.10
  • Tested on GPUs: A800, python version == 3.10, PyTorch version == 2.4.1, cuda version == 12.1

Download the codes:

  git clone https://github.com/fudan-generative-vision/DicFace
  cd DicFace

Create conda environment:

  conda create -n DicFace python=3.10
  conda activate DicFace

Install PyTorch

  conda install pytorch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 pytorch-cuda=12.1 -c pytorch -c nvidia

Install packages with pip

  pip install -r requirements.txt
  python basicsr/setup.py develop
  conda install -c conda-forge dlib

๐Ÿ“ฅ Download Pretrained Models

The pre-trained weights have been uploaded to Baidu Netdisk. Please download them from the link

Now you can easily get all pretrained models required by inference from our HuggingFace repo.

File Structure of Pretrained Models The downloaded .ckpts directory contains the following pre-trained models:

.ckpts
|-- CodeFormer                  # CodeFormer-related models
|   |-- bfr_100k.pth            # Blind Face Restoration model 
|   |-- color_100k.pth          # Color Restoration model 
|   `-- inpainting_100k.pth     # Image Inpainting model
|-- dlib                        # dlib face-related models
|   |-- mmod_human_face_detector.dat  # Human face detector
|   `-- shape_predictor_5_face_landmarks.dat  # 5-point face landmark predictor
|-- facelib                     # Face processing library models
|   |-- detection_Resnet50_Final.pth  # ResNet50 face detector 
|   |-- detection_mobilenet0.25_Final.pth  # MobileNet0.25 face detector 
|   |-- parsing_parsenet.pth    # Face parsing model
|   |-- yolov5l-face.pth        # YOLOv5l face detection model
|   `-- yolov5n-face.pth        # YOLOv5n face detection model
|-- realesrgan                  # Real-ESRGAN super-resolution model
|   `-- RealESRGAN_x2plus.pth   # 2x super-resolution enhancement model
`-- vgg                         # VGG feature extraction model
    `-- vgg.pth                 # VGG network pre-trained weights

๐ŸŽฎ Run Inference

for blind face restoration

python scripts/inference.py \
        -i /path/to/video \
        -o /path/to/output_folder \
        --max_length 10 \
        --save_video_fps 24 \
        --ckpt_path /bfr/bfr_weight.pth \
        --bg_upsampler realesrgan \
        --save_video 

# or your videos has been aligned
python scripts/inference.py \
        -i /path/to/video \
        -o /path/to/output_folder \
        --max_length 10 \
        --save_video_fps 24 \
        --ckpt_path /bfr/bfr_weight.pth \
        --save_video \
        --has_aligned

for colorization & inpainting task

The current colorization & inpainting tasks only supports input of aligned faces. If a non-aligned face is input, it may lead to unsatisfactory final results.

# for colorization task
python scripts/inference_color_and_inpainting.py \
        -i /path/to/video_warped \
        -o /path/to/output_folder \
        --max_length 10 \
        --save_video_fps 24 \
        --ckpt_path /colorization/colorization_weight.pth \
        --bg_upsampler realesrgan \
        --save_video \
        --has_aligned

# for inpainting task
python scripts/inference_color_and_inpainting.py \
        -i /path/to/video_warped \
        -o /path/to/output_folder \
        --max_length 10 \
        --save_video_fps 24 \
        --ckpt_path /inpainting/inpainting_weight.pth \
        --bg_upsampler realesrgan \
        --save_video \
        --has_aligned

test data

our test data link: https://pan.baidu.com/s/1zMp3fnf6LvlRT9CAoL1OUw?pwd=drhh

TBD

๐Ÿ“ Citation

If you find our work useful for your research, please consider citing the paper:

@misc{chen2025dicfacedirichletconstrainedvariationalcodebook,
      title={DicFace: Dirichlet-Constrained Variational Codebook Learning for Temporally Coherent Video Face Restoration}, 
      author={Yan Chen and Hanlin Shang and Ce Liu and Yuxuan Chen and Hui Li and Weihao Yuan and Hao Zhu and Zilong Dong and Siyu Zhu},
      year={2025},
      eprint={2506.13355},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2506.13355}, 
}