DicFace: Dirichlet-Constrained Variational Codebook Learning for Temporally Coherent Video Face Restoration
1Fudan Universityโ
2Alibaba Groupโ
3Nanjing Universityโ
Blind Face Restoration
Face Inpainting
Face Colorization
๐ฐ News
2025/06/23
: Release our pretrained model on huggingface repo.2025/06/17
: Paper submitted on Arixiv. paper2025/06/16
: ๐๐๐ Release inference scripts
๐ ๏ธ Roadmap
Status | Milestone | ETA |
---|---|---|
โ | Inference Code release | 2025-6-16 |
โ | Model Weight release๏ผ baidu-link | 2025-6-16 |
โ | Paper submitted on Arixiv | 2025-6-17 |
๐ | Test data release | 2025-6-24 |
๐ | Training Code release | 2025-6-24 |
โ๏ธ Installation
- System requirement: PyTorch version >=2.4.1, python == 3.10
- Tested on GPUs: A800, python version == 3.10, PyTorch version == 2.4.1, cuda version == 12.1
Download the codes:
git clone https://github.com/fudan-generative-vision/DicFace
cd DicFace
Create conda environment:
conda create -n DicFace python=3.10
conda activate DicFace
Install PyTorch
conda install pytorch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 pytorch-cuda=12.1 -c pytorch -c nvidia
Install packages with pip
pip install -r requirements.txt
python basicsr/setup.py develop
conda install -c conda-forge dlib
๐ฅ Download Pretrained Models
The pre-trained weights have been uploaded to Baidu Netdisk. Please download them from the link
Now you can easily get all pretrained models required by inference from our HuggingFace repo.
File Structure of Pretrained Models The downloaded .ckpts directory contains the following pre-trained models:
.ckpts
|-- CodeFormer # CodeFormer-related models
| |-- bfr_100k.pth # Blind Face Restoration model
| |-- color_100k.pth # Color Restoration model
| `-- inpainting_100k.pth # Image Inpainting model
|-- dlib # dlib face-related models
| |-- mmod_human_face_detector.dat # Human face detector
| `-- shape_predictor_5_face_landmarks.dat # 5-point face landmark predictor
|-- facelib # Face processing library models
| |-- detection_Resnet50_Final.pth # ResNet50 face detector
| |-- detection_mobilenet0.25_Final.pth # MobileNet0.25 face detector
| |-- parsing_parsenet.pth # Face parsing model
| |-- yolov5l-face.pth # YOLOv5l face detection model
| `-- yolov5n-face.pth # YOLOv5n face detection model
|-- realesrgan # Real-ESRGAN super-resolution model
| `-- RealESRGAN_x2plus.pth # 2x super-resolution enhancement model
`-- vgg # VGG feature extraction model
`-- vgg.pth # VGG network pre-trained weights
๐ฎ Run Inference
for blind face restoration
python scripts/inference.py \
-i /path/to/video \
-o /path/to/output_folder \
--max_length 10 \
--save_video_fps 24 \
--ckpt_path /bfr/bfr_weight.pth \
--bg_upsampler realesrgan \
--save_video
# or your videos has been aligned
python scripts/inference.py \
-i /path/to/video \
-o /path/to/output_folder \
--max_length 10 \
--save_video_fps 24 \
--ckpt_path /bfr/bfr_weight.pth \
--save_video \
--has_aligned
for colorization & inpainting task
The current colorization & inpainting tasks only supports input of aligned faces. If a non-aligned face is input, it may lead to unsatisfactory final results.
# for colorization task
python scripts/inference_color_and_inpainting.py \
-i /path/to/video_warped \
-o /path/to/output_folder \
--max_length 10 \
--save_video_fps 24 \
--ckpt_path /colorization/colorization_weight.pth \
--bg_upsampler realesrgan \
--save_video \
--has_aligned
# for inpainting task
python scripts/inference_color_and_inpainting.py \
-i /path/to/video_warped \
-o /path/to/output_folder \
--max_length 10 \
--save_video_fps 24 \
--ckpt_path /inpainting/inpainting_weight.pth \
--bg_upsampler realesrgan \
--save_video \
--has_aligned
test data
our test data link: https://pan.baidu.com/s/1zMp3fnf6LvlRT9CAoL1OUw?pwd=drhh
TBD
๐ Citation
If you find our work useful for your research, please consider citing the paper:
@misc{chen2025dicfacedirichletconstrainedvariationalcodebook,
title={DicFace: Dirichlet-Constrained Variational Codebook Learning for Temporally Coherent Video Face Restoration},
author={Yan Chen and Hanlin Shang and Ce Liu and Yuxuan Chen and Hui Li and Weihao Yuan and Hao Zhu and Zilong Dong and Siyu Zhu},
year={2025},
eprint={2506.13355},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2506.13355},
}
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support