|
--- |
|
license: cc-by-4.0 |
|
base_model: NazaGara/NER-fine-tuned-BETO |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- conll2002 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: beto-finetuned-ner-cfv |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: conll2002 |
|
type: conll2002 |
|
config: es |
|
split: validation |
|
args: es |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8614471581830633 |
|
- name: Recall |
|
type: recall |
|
value: 0.8671875 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8643077980075576 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9790072369291234 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# beto-finetuned-ner-cfv |
|
|
|
This model is a fine-tuned version of [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on the conll2002 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1659 |
|
- Precision: 0.8614 |
|
- Recall: 0.8672 |
|
- F1: 0.8643 |
|
- Accuracy: 0.9790 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 4e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 16 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0272 | 1.0 | 1041 | 0.1062 | 0.8549 | 0.8637 | 0.8593 | 0.9786 | |
|
| 0.0208 | 2.0 | 2082 | 0.1127 | 0.8443 | 0.8596 | 0.8519 | 0.9782 | |
|
| 0.0158 | 3.0 | 3123 | 0.1195 | 0.8545 | 0.8598 | 0.8572 | 0.9787 | |
|
| 0.0129 | 4.0 | 4164 | 0.1332 | 0.8629 | 0.8589 | 0.8609 | 0.9782 | |
|
| 0.0107 | 5.0 | 5205 | 0.1299 | 0.8555 | 0.8635 | 0.8595 | 0.9786 | |
|
| 0.0087 | 6.0 | 6246 | 0.1486 | 0.8564 | 0.8564 | 0.8564 | 0.9782 | |
|
| 0.0085 | 7.0 | 7287 | 0.1583 | 0.8618 | 0.8596 | 0.8607 | 0.9783 | |
|
| 0.0066 | 8.0 | 8328 | 0.1582 | 0.8604 | 0.8580 | 0.8592 | 0.9783 | |
|
| 0.0052 | 9.0 | 9369 | 0.1571 | 0.8554 | 0.8566 | 0.8560 | 0.9781 | |
|
| 0.0054 | 10.0 | 10410 | 0.1604 | 0.8628 | 0.8640 | 0.8634 | 0.9787 | |
|
| 0.004 | 11.0 | 11451 | 0.1584 | 0.8624 | 0.8670 | 0.8647 | 0.9791 | |
|
| 0.0036 | 12.0 | 12492 | 0.1633 | 0.8603 | 0.8658 | 0.8630 | 0.9786 | |
|
| 0.0036 | 13.0 | 13533 | 0.1620 | 0.8628 | 0.8658 | 0.8643 | 0.9790 | |
|
| 0.0032 | 14.0 | 14574 | 0.1645 | 0.8617 | 0.8676 | 0.8647 | 0.9793 | |
|
| 0.0028 | 15.0 | 15615 | 0.1645 | 0.8604 | 0.8670 | 0.8637 | 0.9792 | |
|
| 0.003 | 16.0 | 16656 | 0.1659 | 0.8614 | 0.8672 | 0.8643 | 0.9790 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|